Сердце машины. Наше будущее в эру эмоционального искусственного интеллекта - страница 59

Шрифт
Интервал


В общем, при большем количестве скрытых слоев сеть способна функционировать с большей точностью. (Хотя есть момент, при достижении которого точность начинает падать.) Дилемма стремления к большей точности состоит в том, что чем больше используется нейронов и слоев, тем больше требуется времени для вычислений. К счастью, практически в то же время, когда вышли статьи 2006 года, стали более доступными и дешевыми графические процессоры. С ними удалось на порядок ускорить обучение нейросетей, поскольку сжатие изображений, на которое раньше уходили недели, теперь можно было выполнить за несколько дней или даже часов. Различные подходы улучшили техники глубинного обучения, в том числе ограниченную машину Больцмана и рекуррентную нейронную сеть. Улучшенные алгоритмы глубинного обучения использовались во многих разновидностях распознавания образов. Прогресс в скорости расчетов привел к значительным успехам искусственного интеллекта в течение последнего десятилетия. Например, технология DeepFace, используемая в социальной сети Facebook, способна распознавать человеческие лица с точностью до 97 %. В 2012 году команда ученых Торонтского университета по исследованию искусственного интеллекта, в которую входили Хинтон и двое его студентов, победила в соревновании между исследовательскими группами по широкомасштабному распознаванию образов в базе данных. Их нейросеть на основе глубинного обучения не оставила соперникам ни одного шанса на победу>5. Совсем недавно компания Google DeepMind использовала техники глубинного обучения для разработки ИИ, играющего в го, под названием AlphaGo. Программа AlphaGo обучалась самостоятельно при помощи базы данных, в которую были занесены тридцать миллионов записанных ходов из игр уровня эксперта. В марте 2016 года AlphaGo выиграл у гроссмейстера по го мирового уровня Ли Седоля четыре партии из пяти. Игра в го считается более сложной для искусственного интеллекта, чем игра в шахматы. Разработчики ИИ не ожидали игры на таком уровне еще по крайней мере в течение десятилетия.

Метод обучения не менее важен, чем используемые алгоритмы. Вот почему компании Affectiva пришлось изменить код приложения FaceSense. Ведь в обучении первоначального приложения участвовало относительно мало исследователей. Как только была завершена новая система, Affectiva запустила пилотный проект, в котором рекламный ролик Супербоула