Б. Индукция неполная, где делается вывод о том, что всем представителям изучаемого множества принадлежит свойство Р на том основании, что Р принадлежит некоторым представителям этого множества. Например, “некоторые металлы имеют свойство электропроводности”, значит, “все металлы электро-проводны”.
В. Индукция полная, в которой делается заключение о том, что всем представителям изучаемого множества принадлежит свойство Р на основании полученной при опытном исследовании информации о том, что каждому представителю изучаемого множества принадлежит свойство Р.
Рассматривая полную индукцию, необходимо иметь в виду что:
Во-первых, она не дает нового знания и не выходит за пределы того, что содержится в ее посылках. Тем не менее общее заключение, полученное на основе исследования частных случаев, суммирует содержащуюся в них информацию, позволяет обобщить, систематизировать ее.
Во-вторых, хотя заключение полной индукции имеет в большинстве случаев достоверный характер, но и здесь иногда допускаются ошибки. Последние связаны главным образом с пропуском какого-либо частного случая (иногда сознательно, преднамеренно – чтобы “доказать” свою правоту), вследствие чего заключение не исчерпывает все случаи и тем самым является необоснованным.
Г. Индукция научная, в которой, кроме формального обоснования полученного индуктивным путем обобщения, дается дополнительное содержательное обоснование его истинности, – в том числе с помощью дедукции (теорий, законов). Научная индукция дает достоверное заключение благодаря тому, что здесь акцент делается на необходимые, закономерные и причинные связи.
Д. Индукция математическая – используется в качестве специфического математического доказательства, где органически сочетаются индукция с дедукцией, предположение с доказательством.
7. Индуктивные методы установления причинных связей – индукции каноны (правила индуктивного исследования Бэкона – Милля).
А. Метод единственного сходства, если наблюдаемые случаи какого-либо явления имеют общим лишь одно обстоятельство, то, очевидно (вероятно), оно и есть причина данного явления.
Применение метода сходства в реальном исследовании наталкивается на серьезные препятствия.
Во-первых, потому что непросто во многих случаях отделить разные явления друг от друга.