Предсказываем тренды. С Rattle и R в мир моделей классификации - страница 15

Шрифт
Интервал


Если число предикторов, на которые влияют отсутствующие значения, небольшое, анализ отношений между предикторами – хорошая идея. Например, могут использоваться такие методы как визуализация или PCA, чтобы определить, есть ли прочные отношения между предикторами. Если переменная с отсутствующими значениями чрезвычайно коррелирована с другим предиктором, у которого есть немного отсутствующих значений, используемая модель может часто быть эффективной для заполнения.

Одним из популярных методов заполнения является модель K-ближайших соседей. Эта модель по значения ближайших соседей может оценить значение отсутствующих значений предиктора.

2.4. Удаление предикторов

Есть потенциальные преимущества для удаления предикторов до моделирования. Во-первых, меньшее количество предикторов означает уменьшение вычислительной сложности и времени вычислений. Во-вторых, если два предиктора чрезвычайно коррелированы, это подразумевает, что они измеряют ту же самую базовую информацию. Удаление одного из них не должно ставить под угрозу результативность модели и могло бы привести к более экономной и поддающейся толкованию модели. В-третьих, некоторым моделям могут нанести вред предикторы с вырожденными распределениями. В этих случаях может быть значимое уточнение в результативности модели и/или устойчивости без проблематичных переменных.

2.4.1. Корреляции между предикторами

Коллинеарность – технический термин для ситуации, где у пары предикторов есть существенная корреляция друг с другом. Также возможно одновременно иметь отношения между многими предикторами (называется мультиколлинеарность).

Если набор данных состоит из слишком большого числа предикторов для визуального исследования, то можно использовать такие методы как PCA для установления характеристик проблемы. Например, если первый основной компонент учитывает большой процент дисперсии, то возникают подозрения в существовании единственной переменной для модели.

Вообще, есть серьезные основания исключить чрезвычайно коррелированные предикторы. Во-первых, избыточные предикторы часто более усложняют модели, чем добавляют информации к ней. Использование чрезвычайно коррелированных предикторов в таких моделях, как линейная регрессия, может привести к очень нестабильным моделям, числовым ошибкам, и ухудшить предсказательную результативность.