– доля истинно положительных примеров (True Positives Rate):
В случае целевой переменной «лонг/шорт» – это доля правильно классифицированных «лонгов» по отношению ко всему множеству (ко всей выборке).
– доля ложно положительных примеров (False Positives Rate):
В случае целевой переменной «лонг/шорт» – это доля ложно классифицированных «лонгов» по отношению ко всему множеству (ко всей выборке).
Введем еще два определения: чувствительность и специфичность модели. Ими определяется объективная ценность любого бинарного классификатора.
Чувствительность(Sensitivity) – это и есть доля истинно положительных случаев, т.е.:
Специфичность(Specificity) – доля истинно отрицательных случаев, которые были правильно идентифицированы моделью:
Sp = TN (TN+FP) = 1 – FPR
Попытаемся разобраться в этих определениях.
Модель с высокой чувствительностью часто дает истинный результат при наличии положительного исхода (обнаруживает положительные примеры). Наоборот, модель с высокой специфичностью чаще дает истинный результат при наличии отрицательного исхода (обнаруживает отрицательные примеры).
Если рассуждать в терминах двух наших целевых переменных «лонг/вне рынка» и «вне рынка/шорт», то становится очевидной применение рассматриваемых показателей:
– модель с высокими значениями чувствительности для первой целевой переменной «лонг/вне рынка» проявится в повышенной диагностики «лонгов»;
– модель с высокими значениями специфичности для второй целевой переменной «вне рынка/шорт» проявится в повышенной диагностики «шортов».
Забегая вперед, приведу график кривой ROC, в которой осями является чувствительность Se, она же TPR, и дополнение до единицы специфичности 1 – FPR.
Рис.5.1. Кривая ROC для модели случайного леса.
График дополнен прямой х=у.
Для идеального классификатора график ROC-кривой проходит через верхний левый угол, где доля истинно положительных случаев составляет 100% или 1.0 (идеальная чувствительность), а доля ложно положительных примеров равна нулю. Поэтому чем ближе кривая к верхнему левому углу, тем выше предсказательная способность модели. Наоборот, чем меньше изгиб кривой, и чем ближе она расположена к диагональной прямой, тем менее эффективна модель. Диагональная линия соответствует «бесполезному» классификатору, то есть полной неразличимости двух классов.