Предсказываем тренды. С Rattle и R в мир моделей классификации - страница 38

Шрифт
Интервал


Эффективная модель логистической регрессии способна учесть нелинейные эффекты. Например, использовать кубические сплайны для создания гибких, адаптивных версий предикторов, которые могут учесть много типов нелинейности.

Модель логистической регрессии очень популярна из-за ее простоты и возможности сделать выводы о параметрах модели. Например, можно оценить наличие у дня календарного года статистически значимого отношения с вероятностью принятия решения о торговой сигнале.

6.2. Линейный дискриминантный анализ (LDA)

Cформулируем проблему классификации следующим образом: найти линейную комбинацию предикторов так, что межгрупповая дисперсия максимальна относительно дисперсии внутри групп. Другими словами необходимо найти комбинацию предикторов, которые дали максимальное разделение между центрами данных, одновременно имея минимальное изменение в пределах каждой группы данных.

Дисперсия внутри групп была бы оценена дисперсией, которая объединяет дисперсии в пул предиктора в пределах каждой группы. Взятие отношения этих двух количеств является, в действительности, отношением сигнала-шум. Получается, что мы определяем такие линейные комбинации предикторов, которые дают максимальное отношение сигнал-шум.

6.3. Регрессия частично наименьших квадратов (PLS)

В случае коррелированности предикторов нельзя непосредственно использовать обычный линейный подход для поиска оптимальной дискриминантной функции. Эта же проблема существует и при попытке удалить чрезвычайно коррелированные предикторы в рамках анализа главных компонент РСА. Если существуют сложные отношения корреляции в данных, то PCA может использоваться для уменьшения размерности пространства предикторов. Однако PCA может не идентифицировать комбинации предикторов, которые оптимально разделяют выборки на группы с учетом целевой переменной. Цель РСA состоит в поиске подпространства, которое с максимальной меж-внутри групповой изменчивостью. Однако далеко не факт, что выделенные факторы оптимальным образом будут связаны и целевой переменной, поскольку задача метода РСА состоит в объяснении связей предикторов. В этих случаях рекомендуется использовать регрессию частично наименьших квадратов PLS.

Регрессия PLS решает задачу формирования небольшого количества новых предикторов, в пространстве которых связь между зависимой переменной и предикторами достигает максимального значения.