– априорная вероятность классов.
Для деревьев предсказанные вероятности класса (или доверительное значение) не могли бы быть непротиворечивыми с дискретными предсказаниями класса при использовании неравных затрат. Заключительное предсказание класса для выборки является функцией вероятности класса и структуры издержек. Вероятности класса в терминальном узле могут заметно одобрять определенный класс, но также и иметь крупную ожидаемую стоимость. Поэтому есть разрыв между доверительным значением и предсказанным классом. Отсюда, простые вероятности класса (или доверительные значения) не должны использоваться при этих обстоятельствах.
Приведем некоторые функции, которые могут быть использованы при работе над данным разделом.
Приведено название функции, а в скобках название пакета, в котором функция расположена. Для использования функция необходима загрузка пакета, а если его еще нет, то и установка.
Если названия пакета не приведено – это означает, что функция имеется в базовом пакете и не требуется предварительная загрузка пакета.
Для реализации идей данного раздела могут быть использованы следующие пакеты: caret, C50, DMwR, kernlab, pROC и rpart.
createDataPartition (caret)
стратифицированная случайная выборка;
оптимизирует чувствительность и специфичность на кривой ROC;
downSample (caret)
upSample (caret)
с параметром class. weights подгоняет модель SVM в режиме взвешивания.