4-0; 4–1; 4–2; 4–3; 4–5; 4–6.
Итак, каждое число очков повторяется, как мы видим, четное число раз. Ясно, что косточки такого набора можно приставлять одну к другой равными числами очков до исчерпания всего набора. А когда это сделано, когда наши 21 косточка вытянуты в непрерывную цепь, тогда между стыками 0–0,1 – 1, 2–2 и т. д. вдвигаем отложенные 7 двойняшек. После этого все 28 косточек домино оказываются вытянутыми, с соблюдением правил игры, в одну цепь.
16. Легко показать, что цепь из 28 костей домино должна кончаться тем же числом очков, каким она начинается. В самом деле: если бы было не так, то числа очков, оказавшиеся на концах цепи, повторялись бы нечетное число раз (внутри цепи числа очков лежат ведь парами); мы знаем, однако, что в полном наборе костей домино каждое число очков повторяется 8 раз, т. е. четное число раз. Следовательно, сделанное нами допущение о неодинаковом числе очков на концах цепи неправильно: числа очков должны быть одинаковы. (Такого рода рассуждения, как эти, в математике называются «доказательствами от противного».)
Между прочим, из сейчас доказанного свойства цепи вытекает следующее любопытное следствие: цепь из 28 косточек всегда можно сомкнуть концами и получить кольцо. Полный набор костей домино может быть, значит, выложен, с соблюдением правил игры, не только в цепь со свободными концами, но также и в замкнутое кольцо. Читателя может заинтересовать вопрос: сколькими различными способами выполняется такая цепь или кольцо? Не входя в утомительные подробности расчета, скажем здесь, что число различных способов составления 28-косточковой цепи (или кольца) огромно: свыше 7 биллионов. Вот точное число:
7 959 229 931 520
(оно представляет собою произведение следующих множителей: 213 х 38 х 5 х 7 х 4231).
17. Решение этой головоломки вытекает из только что сказанного. 28 косточек домино, как мы знаем, всегда выкладываются в сомкнутое кольцо; следовательно, если из этого кольца вынуть одну косточку, то
Конец ознакомительного фрагмента.