Чудеса арифметики от Пьера Симона де Ферма - страница 9

Шрифт
Интервал


При том объёме знаний, которым располагает сегодняшняя наука, такое беспомощное её состояние кажется чем-то иррациональным и даже немыслимым. Тем не менее, оно пронизывает всю её насквозь и далеко не только проблема ВТФ, а вообще куда ни ткни, везде одно и то же – наука демонстрирует свою несостоятельность настолько часто и в таком множестве вопросов, что их просто не перечесть. Различие только в том, что некоторые из них всё-таки находят своё решение, а вот на ВТФ наука застряла на века. Но в том-то и состоит величие этой проблемы, что она, кроме чисто методологических трудностей указывает и на некоторые аспекты фундаментального характера, имеющие настолько мощный потенциал, что если удастся его раскрыть, то наука станет способна совершить небывалый прорыв в своём развитии.

На этот аспект обратил внимание Ферма, который ещё тогда заметил, что у науки нет корней, поддерживающих её как единое целое. Проще говоря, логические построения, используемые при решении конкретных задач, не имеют прочной опоры, определяющей способ существования каждой отдельной отрасли знаний. Если такой опоры нет, то наука лишается защиты от появления в ней всякого рода призраков, принимаемых за реальные сущности. Основная, или как её ещё называют, фундаментальная теорема арифметики – яркий тому пример. Казалось бы, чего проще-то, нужно лишь принять в качестве незыблемого положение о том, что числа могут быть либо натуральными, либо производными от них. Всё, что не подчиняется этому правилу, числом быть не может. С учётом того, что арифметика является единственной наукой, без которой не могут обойтись никакие другие науки, можно констатировать, что без ОТА не может обойтись вообще вся наука целиком! Но сама-то она даже не в курсе того, что как раз ОТА до сих пор и остаётся недоказанной. И как вы думаете, почему? … Да потому, что наука попросту не знает, что такое число!!!

Даже на далёких от науки людей этот очевидный факт может произвести просто шокирующее впечатление. Ведь тогда явно напрашивается вопрос: если наука не знает даже этого, то что же она тогда вообще может знать? В этой книге будет дано разъяснение в чём здесь трудность и предложено решение этой проблемы. Это сразу потянет за собой необходимость аксиом и базовых свойств чисел, о которых и раньше было известно, но совсем в ином понимании. После определения понятия числа и аксиоматики потребуется доказательство ОТА, т.к. иначе бóльшую часть всех других теорем будет просто невозможно доказать.