об игре, – машины неизбежно будут поставлять более точные данные, чтобы подтвердить или опровергнуть любые заявления соперников. Судья может быть данью традиции, которая делает опыт более личностным или захватывающим
прямо сейчас, но, на мой взгляд, ностальгия, связанная с профессией, не означает, что она будет востребована вечно.
Даже после того, как выяснилось, насколько всепоглощающими являются данные, некоторые все еще могут надеяться на то, что наука о данных не повлияет на их бизнес в ближайшее время. В конце концов, нужно время, чтобы что-то произошло. Но думать таким образом было бы большой ошибкой, потому что это отрицало бы принцип закона Мура.
Закон Мура
Закон Мура – это закон прогнозирования. Предложенный соучредителем Intel Гордоном Муром в 1965 г., он в первую очередь касался ожидаемого со временем увеличения числа транзисторов (устройств, используемых для управления электрическим током) на квадратный дюйм в интегральных схемах (например, компьютерных микросхемах, микропроцессорах, материнских платах). Было замечено, что число этих транзисторов примерно удваивается каждые два года, и закон утверждал, что тенденция будет продолжаться. На сегодняшний день это подтвердилось[8].
В восприятии непрофессионала это означает, что, если вы пойдете в свой местный компьютерный магазин сегодня и купите компьютер за £1000, а через два года приобретете еще один тоже за £1000 в том же магазине, вторая машина будет в два раза мощнее, хотя она стоит столько же.
Многие применили этот закон к растущему как грибы количеству достижений в области науки о данных. Она является одной из самых быстроразвивающихся академических дисциплин, и занимающиеся ею профессионалы используют все более изощренные способы, чтобы найти новые средства для сбора данных, построения экономичных систем их хранения и разработки алгоритмов, которые превращают все эти порции больших данных в ценные идеи. Доводилось ли вам когда-либо чувствовать, что технологии движутся вперед так быстро, что вы не успеваете идти в ногу со временем? Тогда подумайте об аналитиках данных. Они играют в салочки с технологией, которая еще даже не изобретена.
Кейс: Siri
В качестве примера рассмотрим развитие технологии распознавания речи. Создатели Siri Даг Киттлаус, Адам Чейер и Том Грубер разработали умного личного помощника задолго до того, как технология стала достаточно зрелой, чтобы можно было реализовать идеи и вывести их на рынок. Авторы Siri создали инструменты и алгоритмы для работы с имевшимися у них данными, чтобы поддерживать технологию распознавания речи, которая тогда еще не была изобретена.