Работа с данными в любой сфере - страница 7

Шрифт
Интервал


В главе 3 я также представлю некоторые наиболее важные подходы, которые вы можете использовать, чтобы начать работу как практик. Наука о данных намного проще, чем многие другие научные дисциплины. Вам не нужно быть прирожденным ученым, чтобы овладеть принципами науки о данных. Что вам действительно необходимо – это умение придумывать различные способы извлекать пользу из данных тогда, когда дело касается бизнес-операций или личной мотивации. Ведь ученые – исследователи данных изучают возможности предоставленной информации. Вы можете удивиться, узнав, что у вас уже есть некоторые навыки и опыт, которые вы можете использовать на своем пути к освоению этой дисциплины.

Разумеется, новичкам необходима разумная осторожность. Любой, кто использовал Excel, работал в офисной среде или изучал в университете предмет, имеющий научную составляющую, вероятно, уже встречался с данными. Но некоторые из методов использования данных, которые вы, возможно, усвоили, будут неэффективными, и приверженность тому, что вы уже знаете, может помешать вам изучить наиболее действенные способы использования массивов данных: мы обсудим это подробно во второй и третьей частях.

Несмотря на явный положительный эффект использования данных, важно не обольщаться. Поэтому в главе 3 рассматриваются и различные угрозы безопасности, которые данные могут представлять для своих пользователей, и то, как работают аналитики данных для решения текущих и потенциальных проблем. Этика данных является особенно привлекательной и заслуживающей внимания областью, поскольку она способна изменять и направлять будущие разработки в области науки о данных. Учитывая то, что мы знаем о сборе информации, этика данных – в той мере, в какой ее можно использовать в машинах и онлайн, – создает основу для общения людей и технологий. Когда вы прочитаете эту главу, подумайте о том, как каждая из областей может быть связана с тем, как вы работаете, и насколько полезны для вашего бизнеса дальнейшие инвестиции в эту сферу.

01

Определение данных

Подумайте о последнем фильме, который вы видели в кинотеатре. Как вы впервые узнали о нем? Возможно, вы кликнули на трейлер, когда YouTube рекомендовал его вам, или же ролик появился в качестве рекламы, прежде чем YouTube показал вам видео, которое вы действительно хотели посмотреть. Может быть, вы прочитали в социальной сети, что ваш друг хвалит картину, или в вашей новостной ленте появился увлекательный клип из фильма. Если вы любитель кино, сайт-агрегатор мог подобрать его для вас как фильм, который вам может понравиться. Вы, не исключено, нашли анонс фильма за пределами интернета – в своем любимом журнале либо же могли обратить внимание на афишу по дороге в кофейню, где лучше работает Wi-Fi.