Научные исследования - страница 2

Шрифт
Интервал


Спасибо Богу. Спасибо Божьей матери.

Глава 1

МАТЕМАТИКА

Теорема 1. Произведение n-го количество Х всегда равно произведению n-го количеству других Х, если мы имеем возможность вычислить хотя бы одно Х при некотором числе L.


Х1*Х2*Х3*Хn-1=X4*X5*Xn, при числе L=Хn-Хn-1


Доказательство:

Вычислим одно из Х, пусть это будет Х1

Х1=Х4*Х5/Х2*Х3, при L=(Х4+Х5)-(Х2+Х3)

Пусть Х2=1, Х3=2, Х4=3, Х5=4, тогда Х1=3*4/1*2=6

Полученный расчет в виде формулы: 6*1*2=3*4, при L=(3+4)-(1+2)=4


Пример. Учитель купил 2 альбома, при этом в его классе 32 ученика. Сколько не хватает альбомов, чтобы раздать их каждому ученику?

Решение: Х2=2, Х3=32, Х1-?

Х1*Х2=Х3, при L=Х3-Х2. Тогда Х1=Х3/Х2=32/2=16

В виде формулы: 16*2=32, при L=32-2=30

Ответ: Чтобы раздать каждому ученику альбом, необходимо купленное количество альбомов увеличить в 16 раз, то есть закупить еще 30 штук.


Теорема 2. Произведение n чисел определяет некое число L с вероятностью +/– число N (количество n). Причем разница между плюсовым и минусовым выражением значения L+/– N составляет 2N.

И наоборот, произведение n чисел определяет некое число L, которое вычисляется от числа N (количество n) с вероятностью +/- . Причем разница между плюсовым и минусовым выражением значения N+/– L составляет N+K, где K=Z-N при условии, что N не равно L.


Z=(Х1*Х2*Хn=L+N)-(Х1*Х2*Хn=L-N)=2N, и наоборот

Z=(Х1*Х2*Хn=N+L)-(Х1*Х2*Хn=N-L)=N+K (при K=Z-N, N не равно L)


Доказательство:

Обозначим Х1=1, Х2=2, пусть число N=2

Подставив значения в формулы:

Z=Х1*Х2=L+N, получим Z=1*2=3+2=5,

Z=Х1*Х2*Хn=L-N, получим Z=1*2=3-2=1.

Следовательно, Z=Z1-Z2=5-1=4 и 4=2N, где N по условию было 2

Подставим значения в общую формулу: Z=(1*2=3+3)-(1*2=3-3)=2*3, то есть 2N

И наоборот, при тех же значениях, где N не равно L, подставим значения в общую формулу Z=(Х1*Х2*Хn=N+L)-(Х1*Х2*Хn=N-L)=N+K, где К=Z-N

Z=(1*2=2+3)-(1*2=2-3) =5-(-1)=6=2+4, то есть N+K


Пример. У Славы было 4 карандаша, Никиты 2, Данилы 7, Маши 2. У скольких ребят были карандаши?

Решение: Х1=4, Х2=2, Х3=7, Х4=2, доказать что N=4

Z=(4*2*7*2=112+4)-(4*2*7*2=112-4)=8=2*4, что доказывает теорему, т.к. Z=2N

Рассмотрим наоборот:

Z=(4*2*7*2=4+112)-(4*2*7*2=4-112)=224=4+220 (где N не равно L), то есть у 4 ребят при некотором числе L=220

Ответ: У 4 ребят были карандаши.


Теорема 3. Произведение Хn чисел равно значение NХ, где N – некое число, Х – общее значение произведения Хn.