Перспективы отбора - страница 22

Шрифт
Интервал


-рекомбиназы. В итоге удалось получить две популяции численностью по 10>8 клеток, в которых каждая клетка принадлежала к одному из полумиллиона помеченных клонов.

Затем в течение 168 поколений обе популяции адаптировались к “голодной” среде, где размножение ограничивалось количеством глюкозы (как и в эксперименте Ленски). Численность каждого клона отслеживалась путем массового секвенирования небольшого фрагмента генома, содержащего “штрихкод”. Секвенировать приходилось лишь 0,002 % генома, что позволило резко увеличить разрешающую способность метода по сравнению с полногеномным секвенированием. В поле зрения исследователей попали даже те мутации, частота встречаемости которых в популяции никогда не превышала 10>–5, тогда как секвенирование полных геномов позволило бы отследить лишь клоны с относительной численностью 10>–2 и выше. В результате вместо 25 000 зарегистрированных мутаций исследователи сумели бы обнаружить лишь около 15 (для сравнения вспомним, что в Исследовании № 3 удалось проследить судьбу только тех мутаций, чья частота встречаемости достигала 10 %, то есть 10>–1, или более).

Впрочем, даже зная численность каждого клона в разные моменты времени, определить, в каком из них возникла полезная мутация, – не такая простая задача (рис. 4.1). Каждая мутация возникает сначала у одной особи. Пока число потомков удачного мутанта невелико, динамика их численности определяется не столько приспособленностью (и следовательно, отбором), сколько случайными колебаниями (дрейфом). Большая часть вновь возникающих полезных мутаций теряется из-за дрейфа: потомки удачного мутанта просто не успевают достичь такой численности, при которой отбор “заметит” их полезное свойство и начнет его поддерживать. Мутация становится заметна для отбора (и выходит из-под власти дрейфа) лишь по достижении численности мутантов, сопоставимой с 1/s