Искусственный интеллект на службе бизнеса. Как машинное прогнозирование помогает принимать решения - страница 13

Шрифт
Интервал


То же касается и прогнозов. Они используются в привычных задачах: управлении запасами и прогнозировании спроса, – но благодаря удешевлению все чаще применяются в сферах, не относящихся к прогностике. Кэтрин Хьюм (сейчас возглавляющая отдел инвестиций в цифровые активы Королевского банка Канады) называет способность осознать проблему и переосмыслить ее как задачу прогнозирования «ИИ-инсайтом». Сегодня инженеры по всему миру все чаще так и поступают. Беспилотный транспорт существует в управляемой среде уже больше двадцати лет, однако функционировал он при наличии подробных планов этажей на заводах и складах. С поэтажным планом разработчики программировали своих роботов двигаться по алгоритму «если, то»: если перед роботом находится человек, то следует команда «стоп». Если полка пуста, то нужно двигаться к следующей. Обычные улицы оставались для роботов недоступными: в городском пространстве может случиться все что угодно – слишком много возникает условий «если, то», всего не предусмотреть.

Беспилотный транспорт не будет работать вне полностью предсказуемой и контролируемой среды до тех пор, пока инженеры не переформулируют проблему навигации в прогностическую. Они уже поняли, что вместо того, чтобы просчитывать для машины действия во всех возможных обстоятельствах, необходимо поставить одну прогностическую задачу: что сделал бы человек? И сейчас компании вкладывают миллиарды долларов в обучение автопилота в неконтролируемой среде, в том числе на городских улицах и шоссе.

Представьте ИИ сидящим в автомобиле рядом с водителем. Человек проезжает миллионы километров, получает данные об окружающей среде с помощью собственных глаз и ушей, обрабатывает эту информацию в своем мозге и действует соответствующим образом: едет прямо или сворачивает, тормозит или разгоняется. Программисты наделили ИИ глазами и ушами – датчиками (камерами, радарами, лазерами). Таким образом ИИ собирает поступающие к нему со всех сторон данные, пока человек управляет автомобилем, и одновременно наблюдает за действиями водителя. Что он делает, получив тот или иной набор данных: поворачивает направо, тормозит или нажимает на газ? Чем дольше ИИ наблюдает за водителем, тем лучше предсказывает его действия, исходя из поступающих данных. ИИ учится водить машину, прогнозируя, как поступил бы человек в соответствующих обстоятельствах.