Расчет коробчатых оболочек корпусов сосудов, аппаратов и металлоконструкций. ИЗДАНИЕ 2-е - страница 2

Шрифт
Интервал


Топологию смотрите по работам [12], [13], [14], [15], [16].

В разделе математики «топология» нет разницы между квадратным сечением и круглым.



Точки обоих сечений могут переходить между сечениями. И нужно показать какая точка куда переходит. При этом две близкие точки на окружности окажутся близкими на квадрате. Такое описание коробчатой оболочки с квадратным сечением или любой другой многогранной оболочки является наиболее корректным.

Корректная расчетная модель цилиндрической обечайки по действию внутреннего давления [6], [7], [8]:



Некорректная модель действия внутреннего давления на стенки коробчатой обечайки. В этой модели силовые линии от внутреннего давления приложены перпендикулярно к стенкам коробчатой оболочки [1]:



Несмотря на то, что давление является следствием ударов хаотически двигающихся молекул, такая схема не может строго теоретически считаться корректной. Для теории в схему необходимо внести строгость. Мир красив и прекрасен, как его Создатель.

А теперь приведем корректную модель для нагружения коробчатой оболочки, полностью соответствующей модели нагружения цилиндрической оболочки:



Совместим две корректные модели для цилиндрической и коробчатой оболочки.



Как видно, линии действия сил давления полностью совпадают по направлениям при совмещении кольцевой и коробчатой оболочки.


1. Метод Ефанова

Метод Ефанова К.В. основан на рассмотрении квадратного сечения коробчатой оболочки, полученной по топологии преобразованием из круглого сечений цилиндрической оболочки.

В топологии есть понятие гомеоморфизма. Круг гомеоморфичен квадрату, то есть точки с поверхности круга могут быть перенесены на квадрат и наоборот.

Тогда мы рассматриваем коробчатую оболочку как реальную, то есть как и цилиндрическую, замкнутой саму на себя без какого-либо искусственного деления на пластины для упрощений.

Приведем пример для составной оболочки корпусу цилиндрического сосуда. Цилиндрическая оболочка обечайки сопряжена с шаровыми (или эллиптическими или торосферическими) днищами. Составная оболочка рассматривается как цельная оболочка с местами искривления геометрии в местах перехода с цилиндра на сферу. По такому же принципу может быть рассмотрена и коробчатая оболочка. В этом случае рассматриваются простые пластины, сопряженные между собой.