3) записи биномиальных коэффициентов;
4) обозначения матриц;
5) обозначения открытого геометрического или числового промежутка;
6) обозначения скалярного произведения векторов и смешанного (тройного) скалярного произведения;
7) обозначения периода в позиционной записи дробной части рационального числа.
Перейдем к скобкам квадратным. В лингвистике их употребляют для обозначения транскрипции (ёж [jош]). Квадратными скобками в цитатах задают авторский текст, который проясняет контекст цитаты. «Еще они [скобки] используются в библиографических записях и сносках».
Квадратными скобками в математике обозначается операция взятия целой части числа. Они применяются для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня», для обозначения векторного произведения векторов, для обозначения закрытых промежутков. Квадратные скобки могут использоваться как альтернатива круглым скобкам при записи матриц и векторов. Одинарная квадратная скобка объединяет совокупность уравнений или неравенств.
На компьютерной клавиатуре нет еще двух видов квадратных скобок, которые используются в математике, но знакомы далеко не всем учителям. Это модификации квадратных скобок под названием «пол» и «потолок» для обозначения ближайшего целого, не превосходящего х, и ближайшего целого, не меньшего х, соответственно:
Таких скобок нет на клавиатуре компьютера, но они есть во встроенном в офисный Word редакторе формул, который математики используют для записи формул, содержащихся внутри обычного текста.
Фигурные скобки вообще вотчина математиков. Я даже не знаю, где их используют в русском языке. Фигурными скобками в одних математических текстах обозначается операция взятия дробной части числа, в других – они применяются для обозначения приоритета операций, как третий уровень вложенности (после круглых и квадратных скобок). Фигурные скобки применяют для обозначения множеств. С этим мы уже сталкивались в соответствующем разделе и в текущем изложении примеров применения скобок. Одинарная фигурная скобка объединяет системы уравнений или неравенств, служит для обозначения кусочно-заданной функции.
Прямые скобки используются в математике для обозначения модуля числа или модуля вектора, определителя матрицы:
У остальных скобок более редкое и специфическое использование, поэтому не будем загромождать текст. Скобки могут применяться в паре со скобкой другого вида или удваиваться каждая. Вариантов множество.