а) переложите 3 спички так, чтобы вместо фигуры из 6 равносторонних треугольников получилась фигура их 6 равных четырёхугольников;
б) переложите 3 спички так, чтобы получилось 7 четырёхугольников, но на этот раз они могут быть не равные.
а) переложите 3 спички так, чтобы получилось 3 равных квадрата;
б) переложите 4 спички так, чтобы получилось 3 равных квадрата;
в) переложите 4 спички так, чтобы получилось 2 квадрата;
г) уберите 2 спички так, чтобы осталось 2 квадрата;
д) переложите 2 спички так, чтобы образовалось 7 квадратов (допускается наложение одной спички поперек другой);
е) переложите 4 спички так, чтобы получилось 10 квадратов;
ж) добавьте к исходной фигуре ещё 4 спички так, чтобы квадратов стало 9;
з) расположите те же 12 спичек (все спички должны лежать в плоскости стола) так, чтобы они ограничивали 5 квадратов, причём каждый квадрат должен быть пуст, в противном случае квадраты, изображенные на рисунке, могли бы служить решением, поскольку в качестве пятого мы могли бы считать большой квадрат. Не разрешается ни укладывать две спички одна на другую, ни оставлять свободные концы.
2-44. Спички расположены, как показано на рисунке. Переложите 2 спички так, чтобы получилось 5 равных квадратов.
2-45. В фигуре, изображенной на рисунке:
а) снимите 3 спички так, чтобы получилось 3 равных квадрата;
б) переложите 4 спички так, чтобы получилось 3 не равных квадрата;