Рассуждения об основах физики - страница 19

Шрифт
Интервал


, поэтому диаметр сферы также равен cT. Диаметр сферы оказался равен её радиусу! Легко видеть, что при других скоростях расширения сферы (меньших c), «релятивистская» сфера всегда будет обладать следующим, неприятным, свойством: диаметр «релятивистской» сферывсегда меньше её удвоенного радиуса (это следует из релятивистской формулы сложения скоростей [2, с. 371]). Такую сферу не сможет построить ни один геометр. А не построивши её, геометр ничего и не сможет измерить. А вслед за ним ничего не сможет измерить и физик. И это потому, что в теории относительности нет Аксиомы. На наш взгляд, достаточно рассмотреть только этот один опыт, чтобы понять всю бессмысленность каких-либо измерений в теории относительности.

2. 6. Подмена одного понятия другим

Подмена одного понятия на другое (не равносильное прежнему), довольно распространенная ошибка в логических рассуждениях. Она имеется и в теории относительности. Это – незаконная подмена тензора одного ранга на тензор другого ранга. В теории относительности вектор скорости света



заменяется скаляром c, то есть имеет место подмена: c вместо c. В самом деле. В теории относительности не существует понятия – проекции вектора скорости света на оси координат, то есть чисел – c>1,c>2,c>3. Это означает нарушение правил тензорной алгебры. Аналогично при введении четырехмерного пространства-времени скаляр ct заменяется на вектор, то есть:



Здесь слева – вектор, а справа – скаляр потому, что ie>4 есть единичный вектор пространства L>4 с базисом (e>1, e>2, e>3, ie>4) и этот базис вводится совершенно независимо от каких-либо существующих скалярных величин (в том числе и скалярной величины – времени). Трехмерное пространство L>3 (e>1, e>2, e>3) является подпространством указанного выше четырехмерного пространства L>4 и то, что верно в L>3 верно так же и в L>4. Но в L>3 проекций скалярной величины времени на оси координат не существует, а значит, таких проекций не будет существовать и в L>4. Скалярная величина – время в подпространстве L>3 остается таковой (скалярной) и в пространстве L>4. Нетрудно видеть, что эти подмены есть также следствия отсутствия Аксиомы. В самом деле; если при выводе преобразований Лоренца мы запросто заменяем одну сферу на другую, то почему тогда нам нельзя заменить один геометрический объект на другой? (Скаляр и вектор это – разные геометрические объекты). Таким образом, введение четырехмерного пространства-времени по схеме (2. 6) не является обобщением. Это – ошибка. Эта математическая ошибка тотчас становится и физической потому, что физические величины описываются тензорами.