Статистика. Шпаргалка - страница 11

Шрифт
Интервал


Средние величины тесно связаны с законом больших чисел.

С помощью метода средних величин решаются следующие основные задачи:

1) характеристика уровня развития явлений;

2) сравнение двух или нескольких уровней;

3) изучение взаимосвязей и явлений;

4) анализ размещения явлений в пространстве.

Для решения этих задач используются следующие виды средних величин.

1. Средняя арифметическая (простая) – сумма всех значений варьирующего признака, поделенная на количество единиц совокупности:



2. Средняя арифметическая (взвешенная). Применяется, когда известны отдельные значения признака и их веса (f>i):



где x>i – варианты осредняемого признака;

f>i– частота, которая показывает, сколько раз встречается i-е значение в совокупности.

Для дискретного вариационного ряда значения вариантов умножают на соответствующие частоты и сумму этих произведений делят на сумму частот.

Для интервального вариационного ряда находится среднее значение интервала для каждой группы как полусуммы его верхней и нижней границ.

3. Средняя хронологическая применяется для моментного ряда с равными интервалами между датами:



4. Средняя гармоническая (простая) применяется, когда веса всех вариантов (f) равны:



где х>i– отдельные варианты;

п — число вариантов осредняемого признака.


5. Средняя гармоническая (взвешенная):



В статистике используются различные формы (виды) средней величины, которые могут быть представлены в виде общей формулы:



где 

– средняя величина;

х— индивидуальное значение;

п — число единиц изучаемой совокупности;

к — показатель степени, определяющий вид средней.

11. Понятие о рядах распределения. Их элементы и виды

Статистический ряд распределения – упорядоченное распределение единиц совокупности на группы по определенному варьирующему признаку.

Ряды распределения представляют собой группировки особого вида, при которых по каждому признаку, группе признаков или классу признаков известны численность единиц в группе л ибо удельный вес этой численности в общем итоге. В зависимости от признака, положенного в основу ряда распределения, различают атрибутивные и вариационные ряды распределения.

Атрибутивными называют ряды распределения, построенные по качественным признакам. Ряды распределения принято оформлять в виде таблиц. Атрибутивные ряды распределения характеризуют состав совокупности по тем или иным существенным признакам. Данные, взятые за несколько периодов, позволяют исследовать изменение структуры явления или процесса.