Если оба игрока хорошо понимают правила, все партии раз за разом проходят вничью – механически, без простора для творческой мысли.
Но на том пикнике в Беркли математики играли в необычные крестики-нолики. На их игровом поле каждая из девяти клеток делилась еще на девять клеточек[2]:
Когда я присмотрелся, основные правила прояснились:
Но потребовалось чуть больше времени, чтобы понять самое важное правило:
Вы не можете поставить крестик или нолик в клеточке на произвольном мини-поле. Все зависит от предыдущего хода противника. Вы должны играть на том мини-поле, которое соответствует клеточке, где он поставил свой крестик или нолик.
(А от того, где вы поставите свой крестик или нолик, зависит, на каком мини-поле он будет играть дальше.)
Это придает игре стратегический элемент. Вы не можете ставить крестик или нолик где угодно. Вы должны рассчитать, куда ваш ход перенаправит вашего противника и куда его ход перенаправит вас – и так далее, и так далее. (Есть всего одно исключение: если ваш противник перенаправляет вас на поле, которое уже сыграно, поздравляю – вы можете выбрать любое другое.)
В итоге сценарии игры выглядят эксцентрично: игроки легко теряют по два-три крестика или нолика на одной линии. Как будто звезда баскетбола упускает открытую передачу и кидает мяч в толпу. Но в этом безумии есть метод. Игроки думают на несколько ходов вперед, в зависимости от того, что предпринимает противник. Осуществив хитрую атаку на мини-поле, вы остаетесь в дураках на большом поле, и наоборот – это-то и вносит напряжение в процесс игры.
Время от времени я играю в жесткие крестики-нолики с моими учениками[3]; они наслаждаются стратегией, шансом победить учителя и, что самое существенное, отсутствием тригонометрических функций. Но частенько кто-нибудь из них застенчиво спрашивает: «Ну, мне, конечно, нравится игра, но какое отношение она имеет к математике?»[4]
Я знаю, как обычные люди воспринимают мою профессию: унылая тирания жестких правил и формульных процедур, где не больше разнообразия, чем, скажем, в заполнении страхового свидетельства или налоговой декларации. Вот пример задачки, которая ассоциируется с математикой:
Эта задачка, вероятно, сможет занять ваше внимание на пару минут, хотя вскоре вы абстрагируетесь от геометрического смысла. Периметр больше не будет означать длину линии, ограничивающей прямоугольник. Он превратится просто-напросто в удвоенную сумму двух чисел. Как и в обычных крестиках-ноликах, все сведется к примитивным вычислениям, не требующим интеллектуального напряжения. Здесь нет места фантазии, нет вызова вашим способностям.