Белые карлики. Будущее Вселенной - страница 11

Шрифт
Интервал


А теперь самое главное: развитие MMA, или в российской терминологии многоканальной астрономии.

О чем же речь? Астрономия, как известно, может использовать и такие мессенджеры, как небесные тела – скажем метеориты или кометы, наблюдения за которыми немало рассказывают о дальней периферии Солнечной системы. Богатая информация о Солнце приходит с солнечным ветром – потоками протонов и электронов, долетающих до Земли со скоростями в несколько сотен километров в секунду. Однако для получения сведений о дальнем космосе, особенно о событиях за пределами нашей Галактики, потребны мессенджеры иного рода, путешествующие со световой или почти световой скоростью, причем лучше всего по неискривленным путям. Это импульсы электромагнитных и гравитационных волн (на квантовом языке – потоки фотонов и гравитонов), а также элементарные частицы, которые не несут электрического заряда и потому не отклоняются космическими магнитными полями. Пока в этом качестве работают одни лишь нейтрино, которые имеют ничтожно малую массу и потому движутся практически со скоростью света (впрочем, не исключено, что когда-нибудь откроют и другие подобные мессенджеры). Входящие в состав галактических космических лучей заряженные частицы (протоны и антипротоны, ядра гелия и более тяжелых элементов, а также электроны и позитроны) тоже могут разогнаться до релятивистских скоростей, однако места их рождения отследить намного труднее.

Астрономия, как известно, одна из древнейших наук. Если считать, что ее родоначальником был основатель первой обсерватории античного мира и создатель первой математической модели Солнечной системы Евдокс Книдский, то ей уже 24 столетия. И почти все это время астрономы вели наблюдения лишь в оптическом сегменте электромагнитных волн, то есть в видимом свете. В терминах энергии фотонов ширина этого диапазона меньше полутора электронвольт – от 1,7 эВ в красной части спектра до 3,1 эВ на фиолетовой границе.

В наши дни возможности астрономических наблюдений стали неизмеримо обширней. Сейчас исследователям космического пространства доступны сигналы, которые переносят фотоны с энергиями от 10>–6 эВ (радиоволны) до 300 млрд эВ (верхний предел чувствительности обзорного гамма-телескопа на борту космической обсерватории имени Ферми). Энергии космических нейтрино регистрируются вплоть до 10