Код креативности. Как искусственный интеллект учится писать, рисовать и думать - страница 18

Шрифт
Интервал


Человеческий мозг активно стремится выискивать в визуальных изображениях структуры и закономерности, если только они там есть. Игрок в го может, глядя на расположение камней и пользуясь способностью мозга находить такие структуры, выбрать свой следующий ход, исходя именно из них. Компьютерам всегда было трудно работать с визуальной информацией. Это одна из тех крупных проблем, над которыми инженеры бьются десятилетиями. Высокоразвитая способность человеческого мозга воспринимать визуальные структуры оттачивалась на протяжении миллионов лет, так как она была совершенно необходима для нашего выживания. Выживание любого животного отчасти зависит от его способности различать в визуальном беспорядке, которым окружает нас природа, закономерности и образы. Упорядоченная структура в хаосе джунглей, вероятно, указывает нам на присутствие другого животного – и ее важно заметить, потому что это животное может нас съесть (а может быть, мы его). Человеческий код чрезвычайно хорошо умеет считывать образы, интерпретировать их возможное развитие и вырабатывать соответствующую реакцию. Эта способность – одно из самых ценных наших преимуществ, и именно она помогает нам понимать и оценивать по достоинству образы в музыке и изобразительном искусстве.

Оказывается, именно распознаванием образов я занимаюсь в своей математической работе, когда отправляюсь в неисследованные уголки математических джунглей. Я не могу просто полагаться на пошаговый логический анализ местной среды. С ним я далеко не уйду. Он должен сочетаться с интуитивным ощущением того, что может находиться где-то рядом. Эта интуиция развивается за время, посвященное исследованию уже известного пространства. Но часто бывает трудно логически аргументировать, почему мне кажется, что в таком-то направлении лежит территория, интересная для исследования. Математическая гипотеза – это, по определению, утверждение еще не доказанное, но у математика, высказывающего гипотезу, уже есть ощущение, что его математическое утверждение может быть хотя бы до некоторой степени истинным. Пробираясь сквозь заросли и пытаясь прокладывать новые пути, мы используем как наблюдения, так и интуицию.

Математик, умеющий предложить хорошую гипотезу, часто пользуется большим уважением, чем тот, который соединяет логические точки, чтобы продемонстрировать истинность гипотезы. В игре го выигрышная позиция в некоторых отношениях подобна гипотезе, а партия – последовательности логических ходов, которыми игрок эту гипотезу доказывает. Но различить закономерности в процессе игры чертовски трудно.