описал, как посредством трех цветов (желтого, красного и синего) можно получить, при крашении материи и смешанные цвета всех цветовых тонов. Этот способ в основном и по сей день остался; тем же, только красящие вещества, которым мы придаем желтый, красный и синий цвета, изменились, благодаря развитию техники в области приготовления красок.
Беке, который будучи знаком с красками, но совершенно не знакомый с наукой о цветах, – эту новость, имеющую уже 200-летнюю давность, в наши дни преподнес науке и технике как свое собственное открытие, – «естественное» учение о цветах, пытаясь прикрыть старые недостатки новыми дополнениями еще более низкого качества. Но развитие шло дальше.
Рис. 1
Рис. 2
Так как ошибка, о которой здесь идет речь, все же еще очень распространена, – необходимо здесь же указать на ее источник, хотя обстоятельное исследование может быть сделано только впоследствии. Мы заранее высказываем следующее положение: при смешении двух цветов можно получить все цветовые тона, находящиеся между ними. Располагая по Ньютону цвета в круге, мы получаем из смеси каких бы то ни было двух цветов b (рис. 1) – все цветовые тона цветов, находящиеся между а и b. При дополнении цветового круга всеми смесями цветов с белым, находящимся в центре круга, – таким образом, что из чистых цветов, помещенных по окружности, на каждом соответствующем радиусе, мы получаем все смеси с белым цветом – прямая аb представляет все смеси цветов а и b. Очевидно, что смешанные цвета не так чисты как цвета их составляющие, потому что в результате смешения одновременно возникает и белый цвет и тем в большем количестве, чем больше а удалено от b. Рассматривая представленную на рис. 1 геометрическую фигуру, можно прийти к заключению, что каждая группа трех цветов с, d, е, которые так расположены, что образованный ими треугольник включает в себя центр, могут дать все смеси цветов, соответствующих по цветовому тону всей окружности. Это объясняется тем, что какой бы радиус мы ни взяли, он должен, идя от окружности к центру, пересечь одну из этих трех линий смешения цветов. В то же время видно, что число три есть минимальное количество цветов, при помощи которых можно этого достигнуть, так как два цвета дадут только одну линию, которая случайно может и проходить через центр, но никак не образует поверхности, которая бы окружала его. На этом зиждется тот факт, что посредством удачно подобранных трех цветов можно получить все цветовые