Монопольную модель Курно можно представить графически (см. Рис. 12–1а и Рис. 12–1b). Предположим, линейная кривая спроса на Рис. 12–1а представляет закон спроса Курно. (На кривую МС пока не обращайте внимания.) Собственник (с нулевыми затратами) будет приспосабливать свои продажи минеральной воды так, чтобы продавать количество Q>n по цене P>n, поскольку при количестве Q>n прибавка к общей прибыли (маргинальная прибыль) равна прибавке общих издержек (маргинальные издержки). То есть, MR=MC при количестве Q>n. Альтернативным, но равноценным образом, собственник с нулевыми издержками на производство просто максимизирует общую прибыль, при количестве Q>n, как можно видеть на Рис. 12–1b. В случае нулевых затрат, кривая TR становится функцией прибыли π>0
Монопольная модель собственника минерального источника, обременённого положительными затратами на производство, ясно обнаружила «маргинальный принцип», который является центральным организующим принципом экономической теории. Излагаем задачу в виде вопроса: если монополист сталкивается с затратами на производство, какую цену он назначит и какое количество будет он продавать, чтобы максимизировать прибыли? Предположив, что ϕ(D) равнялась затратам на изготовление некоторого количества литров, равного D, уравнение прибыли Курно приобретает вид π=pF(p) – ϕ(D). Максимизация прибыли требует, чтобы наклон функции прибыли был равен нулю – или, в системе обозначения Курно, чтобы D + dD/dp{p – d[ϕ(D На более простом языке, максимизация прибыли происходит, если MR – MC = 0. Как это изложил Курно: «В каком бы изобилии не находились источники производства, производитель всегда остановится, если увеличение затрат превышает увеличение прибылей» («Математические принципы»). В ссылке на Рис. 12–1а, Курно установил, что прибыли достигают своего максимума там, где MR=MC. Количество произведённых изделий будет Q>c, а цена будет P>c, далее, Q>c будет ниже, а P>c выше, чем с случае с нулевыми издержками. В качестве альтернативы этой трактовке, теорию монополии Коурно можно трактовать как на Рис. 12–1b, который воспроизводит общие затраты, общую прибыль и функцию прибыли, относящуюся к владельцу минерального источника. Этот владелец прекратит производство при Q>c но Рис. 12–1b, где функция прибыли π>1 в максимуме (Курно включил второе условие – чтобы наклон функции прибыли был равен нулю при