Впервые новая теория потеснила 200-летнюю механику Ньютона. Это в корне изменило восприятие мира. Классическая механика Ньютона оказалась верной лишь в земных и близких к ним условиях: при скоростях намного меньше скорости света и размерах, значительно превышающих размеры атомов и молекул и при расстояниях или условиях, когда скорость распространения гравитации можно считать бесконечной.
Ньютоновские понятия о движении были кардинально скорректированы посредством нового достаточно глубокого применения принципа относительности движения. Время уже не было абсолютным и равномерным.
Более того, Эйнштейн изменил фундаментальные взгляды на время и пространство.
Специальная теория относительности применяется в физике и астрономии начиная с XX века. Теория относительности значительно расширила понимание физики в целом, а также существенно углубила знания в области физики элементарных частиц, дав мощнейший импульс и серьёзные новые теоретические инструменты для развития физики, значение которых трудно переоценить. С помощью данной теории космология и астрофизика сумели предсказать такие необычные явления, как нейтронные звезды, чёрные дыры и гравитационные волны.
В настоящее время специальная теория относительности общепринята в научном сообществе и составляет базис современной физики. Часть ведущих физиков сразу приняла новую теорию, в их числе – Макс Планк, Хендрик Лоренц, Герман Минковский, Ричард Толмен, Эрвин Шрёдингер и другие.
В России под редакцией Ореста Даниловича Хвольсона, вышел знаменитый курс общей физики, подробно изложивший специальную теорию относительности и описание экспериментальных оснований теории.
Вместе с тем, критическое отношение к положениям теории относительности выражали Нобелевские лауреаты Филипп Ленард, Й. Штарк, Дж. Дж. Томсон, полезной оказалась дискуссия с Максом Абрахамом и другими учёными».
Но и этим оказалось не по силам отличить массивные тела во плоти – от фактически бесплотных элеменррых частиц.