Ньютона, Кулона, Био-Савара. Однако до сих пор отсутствуют достоверные микрофизические наглядные представления природы пространств, и таких микропространств – продуктов вихревых полей, как ядер атомов химических элементов, электронов, фотонов и т. д., а также макропространств – продуктов стационарных источников тяготения, электричества или магнетизма в форме полей объёмного и динамически регуляризованного распределения зёрен-потенциалов – неких квантоваморфного пространства. Кроме представления пространств полями динамически движущихся зёрен необходимо знать и механизм производства их квантования, постоянного обновления и изменения, потому что в природе существуют источники механизма такого производства.
Таким образом, задача представления пространств делится на две. Одна – представление пространств в форме внешних полей вокруг стационарных источников, в том числе полей вокруг заряда и массы электрона, атомного ядра и т. д. Вторая – представление пространств самих источников в форме внутренних вихревых полей с помощью вихревых источников движения и изменения, назовём их вихронами. Эти вихревые поля будут отображать внутреннююструктуру фотона, фононов и ротонов, электрона, ядер и атомов химических элементов, а в макромире – ударные механические волны и ядра звёзд и планет.
Свойства внешних полей того или иного стационарного источника, присутствующего в данной точке пространства, наделяет его свойством некой регулярно-силовой протяженности объема (силовые линии и потенциалы поля), как функции убывания того или иного потенциала от центра, в котором размещён такой активный источник. Такие поля центральны и раздуваются от центра источника регулярно, обнаруживая себя по взаимодействию[8] с удалёнными зарядами благодаря проявляемым силам через фундаментальные физические постоянные – гравитационную, диэлектрическую и магнитную проницаемость вакуума. Активными назовём исходящиие стационарные векторные поля со знаком плюс, а пассивными назовём заряды, формирующие входящие векторные поля со знаком минус. Тогда первые излучают, а вторые поглощают зёрна-потенциалы. При этом наблюдается стабильная совместимость более сильных пространств в более слабых, т. е. электромагнитных в гравитационных, а также нестабильная совместимость некоторых внутренних микропространств элементарных частиц (около 3000 распадающихся изотопов ядер атомов химических элементов) в слабых гравитационных