Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим - страница 5

Шрифт
Интервал


Приземлившись, Эциони был полон решимости найти способ, который помог бы определить выгодность той или иной цены в интернете. Место в самолете – это товар. Все места на один рейс в целом одинаковы. А цены на них разительно отличаются в зависимости от множества факторов, полный список которых известен лишь самим авиакомпаниям.

Эциони пришел к выводу, что не нужно учитывать все нюансы и причины разницы в цене. Нужно спрогнозировать вероятность того, что отображаемая цена возрастет или упадет. А это вполне осуществимо, причем без особого труда. Достаточно проанализировать все продажи билетов по заданному маршруту, а также соотношение цен и количества дней до вылета.

Если средняя цена билета имела тенденцию к снижению, стоило подождать и купить билет позже. Если же к увеличению – система рекомендовала сразу же приобрести билет по предложенной цене. Другими словами, получилась новоиспеченная версия неформального опроса, который Эциони провел на высоте боле 9000 метров. Безусловно, это была сложнейшая задача по программированию. Но Эциони приступил к работе.

Используя 12-тысячную выборку цен за 41 день, с трудом собранную на сайте путешествий, Эциони создал модель прогнозирования, которая обеспечивала его условным пассажирам неплохую экономию. Система понимала только что, но не имела представления почему. То есть не брала в расчет переменные, влияющие на ценовую политику авиакомпании, например количество непроданных мест, сезонность или непредвиденную задержку рейса, которые могли снизить стоимость перелета. Ее задача заключалась только в составлении прогноза исходя из вероятностей, рассчитанных на основе данных о других рейсах. «Покупать или не покупать, вот в чем вопрос», – размышлял Эциони. И назвал исследовательский проект соответственно – «Гамлет»[5].

Небольшой проект превратился в стартап Farecast с венчурным финансированием. Прогнозируя вероятность и значение роста или снижения цены на авиабилет, он дал возможность потребителям выбирать, когда именно совершать покупку. Он вооружил их ранее недоступной информацией. В ущерб себе служба Farecast была настолько прозрачной, что оценивала даже степень доверия к собственным прогнозам и предоставляла эту информацию пользователям.

Для работы системы требовалось большое количество данных. Для того чтобы повысить эффективность системы, Эциони раздобыл одну из отраслевых баз данных бронирования авиабилетов. Благодаря этой информации система создавала прогнозы по каждому месту каждого рейса американской коммерческой авиации по всем направлениям в течение года. Теперь для прогнозирования в Farecast обрабатывалось около 200 миллиардов записей с данными о рейсах, при этом потребителям обеспечивалась значительная экономия.