Я это всё к тому, чтобы как-то представить себе на месте математической прямой некий физический объект, изменяющийся по определённым правилам.
Итак, перед нами схема получения Канторового множества.
Первая линия – это теоретический размер Континуума.
Поделим его на три равные части. Средний отрезок выкинем. Останется два отрезка суммарной длины 2/3. С каждым из них проделаем точно такую же операцию. Останется четыре отрезка суммарной длины 4/9.
Продолжая так далее, до бесконечности, получаем множество, которое имеет меру меньше любой наперёд заданной положительной величины, то есть меру ноль. Но это ноль с точки зрения математики, которая может измываться над этими отрезками бесконечно, доказывая мощность множества, счетность, плотность и так далее….
В точности уподобляясь спору схоластов на тему: – Сколько чертей уместится на кончике иглы?
Логика процесса, очевидно, говорит нам, что вести его в сторону уменьшения можно бесконечно долго, чтобы получить нечто близкое к точке для первоначально бесконечного пространства или что-либо безэнергетическое для энергетики Вселенной. Также совершенно очевидно, что противоположный процесс ведет к преобразованиям материи от уровня Ничто к уровню Континуума – бесконечности.
Следуя этой логике, мы не станем идти вслед за Кантором в математических премудростях числового ряда с его счислениями и несчислениями бесконечного нуля, то бишь к тем же схоластическим чертям.
Вместо этого воспользуемся рациональном зерном истины, добытой математикой в известном парадоксе Галилея: «Число цифр числового ряда всегда равно числу чётных чисел» (рис.13).
Таинства численного ряда (Рис.13)
Действительно, согласно рисунку слева, числовой парный ряд уходит в бесконечность. И целые числа его можно одно за другим объединить в пары с чётными числами, не исчерпав какого-либо из множеств этих чисел. В первой паре два числа рано четному – два, во второй – четыре цифры (1,2,3,4) дают четное число 4, в третьей 6=6 и т. д.
Фактически Кантор воспользовался Галилеевым парадоксом и превратил его в средство количественного сравнения бесконечных множеств.
Он назвал два множества эквивалентными, если между элементами этих множеств можно установить взаимно однозначное соответствие.
Предположим, что у нас имеется ведёрко, заполненное чёрными и цветными шариками. Каким образом можно сравнить количество чёрных и цветных шариков?…Простейший способ состоит в извлечении их из ведёрка парами, состоящими из чёрного и цветного шариков. Если каждый шарик может быть объединён в пару с шариком другого цвета, то два множества эквивалентны. Если нет, то оставшиеся в ведёрке шарики показывают, каких шариков было больше.