между объектом m и элементом обруча при стремлении его к нулю фактически заменяется в пределе их
слиянием. Теперь это не расстояние
между ними, это их общий размер. Иначе говоря, два элемента слились своими центрами, а на тело, находящееся в центре массивного объекта, не действуют никакие силы.
Проверяем решение численным интегрированием (1.3).
Рис.1.2. График изменения силы притяжения пробного тела внутри обруча в зависимости от его удалённости от центра. График приведён полностью
Диапазон изменения сил оказался слишком большим, поэтому график плохо просматривается. Все его значения почти на 95% длины радиусов выглядят нулевыми. Чтобы сжать график до размеров диаграммы, можно использовать логарифм величины. Понятно, что отрицательные значения в начале графика соответствуют его значениям, меньшим единицы.
Рис.1.3. Логарифмический график изменения силы притяжения внутри обруча пробного тела в зависимости от его удалённости от центра
Без логарифма, с частичным отсечением верхних значений график выглядит на всём интервале возрастающим
Рис.1.4. График изменения силы притяжения пробного тела внутри обруча в зависимости от его удалённости от центра. Максимальные значения частично отсечены.
Если ещё больше увеличить масштаб начального интервала, увеличить отсечение сверху, то будет видна практически параболическая или экспоненциальная зависимость
Рис.1.5. График изменения силы притяжения внутри обруча пробного тела в зависимости от его удалённости от центра. Максимальные значения отсечены.
Интеграл силы (1.3) мы формировали исходя из положительного направления силы в сторону центра обруча. Интегрирование и графики показали положительное значение силы. Из этого следует вывод: тело в пустом обруче притягивается к его центру так, будто там находится некий массивный объект.