– абсолютно незнакомые для большинства профессионалов Уолл-стрит термины.
В 1990 году лишь единицы пользовались электронной почтой, интернет-браузер еще не изобрели, а алгоритмы в лучшем случае были известны как набор пошаговых действий, которые позволяли компьютеру Алана Тьюринга расшифровывать закодированные сообщения нацистов во время Второй мировой войны. Идея того, что подобные формулы могут указать на верное решение или даже управлять повседневной жизнью сотен миллионов людей, а также того, что пара бывших профессоров математики сможет использовать компьютеры для победы над опытными и знаменитыми инвесторами, выглядела надуманной, если не откровенно смехотворной.
Несмотря на это, Саймонс был настроен оптимистично и не терял веры в себя. Он разглядел первые признаки успеха своей компьютерной системы, что вселяло определенную надежду. Кроме того, у Джеймса было не так много вариантов. Его некогда процветающие венчурные инвестиции не приносили дохода, и он совершенно точно не хотел возвращаться к преподавательской деятельности.
«Давайте поработаем над этой системой, – сказал он Берлекэмпу во время очередного срочного звонка. – Я уверен, что в следующем году мы заработаем 80 %».
Доходность 80 % годовых? Он действительно спятил, подумал Берлекэмп.
«Получить такую огромную прибыль почти невозможно», – ответил он Саймонсу. И добавил: «Нет необходимости так часто звонить мне, Джим».
Однако Саймонс продолжал донимать своего напарника. В итоге Берлекэмп потерял терпение и ушел из компании, что стало для Джеймса очередным ударом.
«Черт с ним, я сам запущу этот проект», – сказал Саймонс своему другу.
Примерно в то же самое время в другой части штата Нью-Йорк, в 80 км от офиса Джеймса, еще один ученый, высокий и статный мужчина средних лет, смотрел на флипчарт, пытаясь найти решение для собственных задач. Роберт Мерсер работал в растущем исследовательском центре IBM[8] в пригороде Уэстчестера, пытаясь среди прочего найти способы, при помощи которых можно было бы научить компьютеры лучше распознавать речь и переводить сказанное на иностранном языке.
Вместо того чтобы следовать традиционным методам, Мерсер решал поставленные задачи с помощью ранней версии крупномасштабного машинного обучения.
С коллегами он загружал в компьютеры необходимое количество данных для того, чтобы те автоматически выполняли те или иные действия. Однако Мерсер проработал в этой IT-корпорации уже почти два десятилетия, и до сих пор не было ясно, как далеко вместе со своей командой он может продвинуться.