Человек, который разгадал рынок. Как математик Джим Саймонс заработал на фондовом рынке 23 млрд долларов - страница 28

Шрифт
Интервал


, чем Джеймса.

В результате Саймонсу не удалось собрать необходимую сумму для открытия дела, и он отказался от этой затеи. Это не стало для Джеймса большим провалом, ведь он наконец-то добился прогресса в своем исследовании минимальных поверхностей, подраздела дифференциальной геометрии, который давно его интересовал.

Дифференциальные уравнения, которые применяются в физике, биологии, экономике, социологии и многих других областях, описывают производные математических величин или скорость изменения функции. Знаменитый закон Исаака Ньютона – сила, действующая на тело, равна массе этого тела, умноженной на его ускорение, – представляет собой дифференциальное уравнение, так как ускорение – это вторая производная по времени. Уравнения, которые включают в себя производные по времени и пространству, – это примеры уравнений частных производных, которые также применимы для описания упругости, теплоты и звука.

В теории минимальных поверхностей, исследованием которой Саймонс начал заниматься с первого семестра, став преподавателем МТИ, дано важное описание дифференциальных уравнений в частных производных применительно к геометрии. Стандартным примером из этой области является поверхность мыльной пленки, покрывающей проволочную рамку, которую опустили, а затем достали из мыльного раствора. Такая поверхность имеет наименьшую площадь, по сравнению с любой другой поверхностью, ограниченной аналогичным проволочным контуром. В XIX веке бельгийский физик Жозеф Плато, проводя эксперименты с мыльной пленкой, задался вопросом, всегда ли возможны такие поверхности с «минимальными» площадями и являются ли они настолько ровными, что каждая точка их пространства выглядит одинаково, независимо от того, насколько сложна или извилиста проволочная рамка.

Ответ на поставленный им вопрос, который в итоге получил название «задача Плато», удалось найти, по крайней мере применительно к обычным, двумерным поверхностям, что в 1930 году доказал один математик из Нью-Йорка. Саймонс хотел выяснить, является ли это верным для минимальных поверхностей с более сложными поверхностями – то, что геометры называют минимальными поверхностями в римановых многообразиях.

Математики, которые занимаются решением теоретических задач, зачастую с головой погружаются в свою работу: годами они видят в снах решение своей задачи, мечтают и размышляют о ней во время прогулок. Те, кто не сталкивался с так называемой абстрактной или чистой математикой, расценят это как бессмысленное занятие.