Baidu. Как китайский поисковик с помощью искусственного интеллекта обыграл Google - страница 36

Шрифт
Интервал


Непрерывное развитие вычислительной мощности, следуя вышеуказанным направлением человеческого прогресса, будет значимым компонентом человеческого прогресса. После изобретения компьютерного программирования прогресс человечества начал ускоряться как никогда. Его модель включает в себя следующие ключевые шаги: человек захватывает различные явления во Вселенной, в частности, через преднамеренное наблюдение, чтобы получить опыт; затем эффективно организует, обрабатывает и уточняет информацию посредством вычислений, которые дают человеку более глубокое и абстрактное понимание того или иного явления, формирующего знания; человек использует знания, полученные в результате познания, чтобы действовать, взаимодействовать с явлениями и в конечном итоге достичь желаемого результата.

В основе современных вычислительных систем и IT-технологий стоимостью в несколько триллионов юаней: информационная организация (IO, способствует познанию), выполнение задач (TC, помогает людям достигать большего), богатый опыт (EE, накапливает опыт). Это три основных измерения человеческого прогресса.

Искусственный интеллект – новые возможности вычислительной мощности человека. И он продолжает способствовать прогрессу. Кроме того, искусственный интеллект – революционная вычислительная система высочайшего уровня (ICS). Это само по себе является беспрецедентным и революционным явлением.

Основной структурой, определяющей современную цифровую вычислительную систему, является организационная форма ресурса. Проще говоря, суть вычислений искусственного интеллекта очень отличается от структуры потока управления фон Неймана, который использует линейную память и булевую функцию в качестве базовой вычислительной операции. Новая парадигма – нейронные сети, характеризующиеся распределенными представлениями и активными моделями. Здесь переменные представлены векторами, наложенными на общие физические ресурсы (например, нейроны), и вычисляются путем активации нейронов. Топологическая архитектура сети и режим активации обеспечивают огромное вычислительное пространство, которое может естественно захватить внушительный объем знаний (через топологию суперпараметров, весов, функций активации). В отличие от локализованного представления в архитектуре фон Неймана (где переменные представлены специализированными или локализованными физическими ресурсами, такими как регистры) и символических вычислений, нейронные сети являются более естественными и мощными в глубоком обучении и представлении физического мира, а также в богатом семантическом знании общества.