Роман с Data Science. Как монетизировать большие данные - страница 14

Шрифт
Интервал


«A data-driven organization acquires, processes, and leverages data in a timely fashion to create efficiencies, iterate on and develop new products, and navigate the competitive landscape».


«Организация, управляемая данными, своевременно получает, обрабатывает и использует данные для повышения эффективности, итераций и разработки новых продуктов, а также навигации в конкурентной среде».

Далее Ди Джей указывает на принцип «Если ты не можешь измерить, ты не можешь это исправить» («if you can’t measure it, you can’t fix it»), который объединяет самые сильные организации, эффективно использующие свои данные. Вот рекомендации Патила, которые следуют из этого принципа:

• Собирайте все данные, какие только возможно. Вне зависимости от того, строите ли вы просто отчетную систему или продукт.

• Продумывайте заранее и делайте вовремя измерение метрик проектов.

• Позвольте как можно большему количеству сотрудников знакомиться с данными. Множество глаз поможет быстрее выявить очевидную проблему.

• Стимулируйте интерес сотрудников задавать вопросы относительно данных и искать на них ответы.

Эти мысли я еще озвучу в главе про данные. А теперь самое время поговорить о том, что мы получаем на выходе анализа данных.

Артефакты анализа данных

Здесь и далее под артефактами я буду понимать осязаемый результат, физический или виртуальный объект.


Рис. 2.1. Артефакты аналитики


Их можно разделить на три вида (рис. 2.1):

• артефакты бизнес-анализа данных (business intelligence);

• артефакты машинного обучения (machine learning);

• артефакты инженерии данных (data engineering).

Поговорим о них подробнее.

Бизнес-анализ данных

Бизнес-анализ данных (Business Intelligence, BI) – термин уже устоявшийся. Вот какое определение дает Википедия:

«Business Intelligence – это обозначение компьютерных методов и инструментов для организаций, обеспечивающих перевод транзакционной деловой информации в человекочитаемую форму, пригодную для бизнес-анализа, а также средства для работы с такой обработанной информацией».

Под бизнес-анализом я подразумеваю объединение контекста бизнеса и данных, когда становится возможным бизнесу задавать вопросы к данным и искать ответы Первыми артефактами являются так называемые инсайты и гипотезы, вторыми – отчеты или дашборды, метрики и ключевые показатели (Key Performance Indicator). Поговорим подробнее об инсайтах и гипотезах.