Глава 7 «Инструменты анализа данных», полностью посвящена наиболее популярным способам анализа от электронных таблиц в Excel до облачных систем.
Глава 8 «Алгоритмы машинного обучения» является базовым введением в машинное обучение.
Глава 9 «Машинное обучение на практике» является продолжением предыдущей главы: даются лайфхаки, как изучать машинное обучение, как работать с машинным обучением, чтобы оно приносило пользу.
Глава 10 «Внедрение ML в жизнь: гипотезы и эксперименты» рассказывает о трех видах статистического анализа экспериментов (статистика Фишера, байесовская статистика и бутстрэп) и об использовании А/Б-тестов на практике.
Глава 11 «Этика данных». Я не смог пройти мимо этой темы, наша область начинает все больше и больше регулироваться со стороны государства. Здесь поговорим о причинах этих ограничений.
Глава 12 «Задачи и стартапы» рассказывает об основных задачах, которые я решал в e-commerce, а также о моем опыте сооснователя проекта Retail Rocket.
Глава 13 «Строим карьеру» больше предназначена для начинающих специалистов – как искать работу, развиваться и даже когда уходить дальше.