Как распутать квантовую запутанность - страница 2

Шрифт
Интервал


– Наверное у монеты обе стороны одинаковые?

– Нет! У монеты только одна сторона!

– Может быть монета имеет шарообразную форму?

– Нет! Это обычная плоская монета.

– Тогда она, видимо, имеет форму ленты Мёбиуса?

– Нет же! Это самая обычная монета!

– Какая обычная? Круглая? Вроде пятака?

– Да, именно!

– И у этого круглого пятака только одна сторона?!

– Да, именно так.

– Но этого же не может быть!

Примерно в так можно сказать и про явление запутанности: этого не может быть. Опишем его подробнее. Для этого рассмотрим упрощённую, схематичную модель.

Допустим, у нас есть два фотона – квантовые частицы. Для простоты представим их в виде двух одинаковых монет. Скажем, однокопеечных. Назовём «решку» этих монет «спином» (направлением спина в сторону решки).



Рис.1 Слева монета, изображающая первый фотон, лежит «спином вверх», справа монета, изображающая второй фотон, лежит «спином вниз» в результате 12-го подбрасывания монет.


Если монета лежит решкой вверх, то это означает, что у фотона (который эта монета олицетворяет) спин, соответственно, тоже направлен вверх. Далее неким хитрым способом «запутаем» эти два фотона. Для монет это будет, предположим, их совместное встряхивание в стакане. Для реальных фотонов этот процесс связан с их совместным испусканием, например, специально обработанным кристаллом.

Теперь у нас есть две «запутанные» (сцепленные, перепутанные) монеты (два фотона в состоянии квантовой запутанности). Произведём «измерение» поляризации этих двух монет (фотонов). Измерение фотонов производится с помощью поляризаторов, а «измерение» монет произведём их бросанием на стол. Каков результат этого эксперимента? Сколько бы мы ни измеряли запутанные фотоны, сколько бы, соответственно, мы ни подбрасывали монеты, мы всегда получаем один и тот же результат: если спин одного фотона направлен вверх, то спин второго направлен вниз. Соответственно, если одна монета упала решкой вверх, то вторая обязательно упала решкой вниз. И наоборот. Такой эксперимент и демонстрирует явление квантовой запутанности. Конечно, монеты никогда не ведут себя так хитро: если одна упала решкой вверх, то другая – обязательно решкой вниз. А вот запутанные фотоны – ведут.

Такое поведение запутанных частиц в 1935 году поставили под сомнение Эйнштейн, Подольский и Розен. Изложенные ими взгляды получили название «ЭПР-парадокса» [21]. В 1965 году другой исследователь – Белл математически показал ошибочность взглядов Эйнштейна [4, 19], а в 1981 году известный физик Ален Аспект подтвердил доводы Белла экспериментально [1, 2, 3, 5, 6]. Оказалось, что, действительно, запутанные фотоны вели себя в точности так, как мы выше это обрисовали: многочисленные пары фотонов поляризовались таким удивительным образом, будто чувствовали друг друга. Вот в этом и состоит удивительное свойство квантовой запутанности. Когда одна из квантовых частиц (первый фотон) получает в результате измерения некоторую поляризацию, зависящую от измерительного прибора – поляризатора, так в тот же момент другая квантовая частица получает противоположную поляризацию, что подтверждает второй измерительный прибор. Обе эти поляризации «рождаются» одновременно. Как только первая частица поляризовалась, так сразу же, мгновенно, независимо от расстояния поляризуется и вторая частица. На монетах это выглядело бы так: на северном полюсе монета упала решкой вверх, на южном в тот же самый момент другая монета упала решкой вниз. И так при каждом подбрасывании, сколько бы их ни было.