Задание №2. Алгебра логики
Алгебра логики или булева алгебра – так их называют. Как вы думаете, для чего вообще нужна алгебра логики, кроме как мучить детей? Представьте, что по проводу течет ток. Если ток есть в проводе, то обозначим это действие за 1, т.е. истина. Если же тока нет, то ноль, т.е. ложь. Сборка различных схем на компьютере осуществляется как раз схемами, которые представлены на рис.1.
Рисунок №1
Причем можно усложнить схемы, сделать их большими и громоздкими. В компьютере, понятное дело, используются большие логические схемы взаимодействий. Учить это не хочется, но важно понять, как это работает. Для этого и придумали алгебру логики. Какая бы сложная схема ни получилась, ее всегда можно упростить до двух проводов, далее буду говорить до 2 переменных, на языке алгебры логики. Высказывание – повествовательное предложение, о котором можно сказать, истинно оно или ложно. В алгебре простым высказываниям ставятся в соответствии логические переменные (А, В, С и т.д.). Пример высказываний:
Рисунок №2
Логическая переменная – это простое высказывание.
Логические переменные обозначаются прописными и строчными латинскими буквами (a-z, A-Z) и могут принимать всего два значения – 1, если высказывание истинно, или 0, если высказывание ложно.