Как учится машина. Революция в области нейронных сетей и глубокого обучения - страница 9

Шрифт
Интервал


Часть исследовательского сообщества ИИ продолжает работать над этими темами. Другие специалисты, к которым принадлежу и я, посвятили себя совершенно другим подходам, основанным на машинном обучении.

… или же машинное обучение?

Рассуждения – это лишь малая часть человеческого разума. Мы часто думаем по аналогии, мы действуем интуитивно, опираясь на представления о мире, постепенно приобретаемые через опыт. Восприятие, интуиция, опыт, наборы усвоенных навыков – все это результат обучения.

В таких условиях, если мы хотим построить машину, интеллект которой будет приближен к человеческому, мы должны сделать ее тоже способной к обучению. Человеческий мозг состоит из 86 млрд взаимосвязанных нейронов (или нервных клеток), 16 млрд из которых находятся в коре головного мозга. В среднем каждый нейрон образует почти 2000 других соединений с другими нейронами – так называемых синапсов. Обучение происходит путем создания синапсов, удаления синапсов или изменения их эффективности. Поэтому, используя самый известный подход к машинному обучению, мы создаем искусственные нейронные сети, процесс обучения которых изменяет связи между нейронами. Приведем несколько общих принципов.

Машинное обучение включает первый этап обучения или тренировки, когда машина постепенно «учится» выполнять задачу, и второй этап – реализацию – когда машина закончила обучение.

Чтобы научить машину определять, содержит ли изображение автомобиль или самолет, мы должны начать с представления ей тысяч изображений, содержащих самолет или автомобиль. Каждый раз, когда на входе системе дается изображение, нейронная сеть (или «нейросеть»), состоящая из соединенных между собой искусственных нейронов (в действительности – это множество математических функций, вычисляемых компьютером), обрабатывает это изображение и выдает выходной ответ. Если ответ правильный, мы ничего не делаем и переходим к следующему изображению. Если ответ неверный, мы немного корректируем внутренние параметры машины, то есть силу связей между нейронами, чтобы ее выходной сигнал приближался к желаемому ответу. Со временем система настраивается и в конечном итоге сможет распознать любой объект, будь то изображение, которое она видела ранее, или любое другое. Это называется способностью к обобщению.