Обнаружение вариантов вредоносных программ на основе чувствительных системных вызовов с использованием многослойных нейронных сетей - страница 4

Шрифт
Интервал


Однако, поскольку в таких многослойных нейронных сетях существуют некоторые проблемы, такие как исчезновение градиента и распределенное представление, необходимо улучшить способность нейронных сетей к сходимости для достижения лучшей производительности. Я предлагаю метод многослойных нейронных сетей с инициализацией главного компонента для ускорения скорости сходимости и повышения точности. Инициализация главного компонента преобразует чувствительные системные вызовы в несколько новых векторов столбцов, которые являются линейными комбинациями системных вызовов, новые векторы столбцов линейно независимы, что может снизить сложность вычислений и ускорить скорость сходимости.

Взносы

Основные материалы этой книги обобщены следующим образом.

1. Чтобы уменьшить запутанность, вызванную упаковщиками, я извлекаю серию системных вызовов из распакованных экземпляров, которые более чувствительны к вредоносному поведению, путем обучения с получением информации, которая пропускает знания о распаковке.

2. Для обнаружения с разреженным представлением чувствительных системных вызовов я предлагаю мою многослойную нейронную сеть, инициализированные основным компонентом, в качестве эффективного и действенного классификатора для классификации упакованных вредоносных вариантов и упакованных законных.

3. Результаты экспериментов показывают, что мой подход обеспечивает 95,6% точности обнаружения и 0,048 с затрат времени на классификацию. Более того, результаты оценки показывают, что мой подход обеспечивает очень низкую частоту ложноположительных результатов, что означает, что он редко ошибается при обнаружении упакованных доброкачественных экземпляров.