Только есть одно условие: чтобы, становясь кем-то ещё, остаться собой, нужно время от времени внимательно изучать содержимое «гардероба», вдумчиво примерять свои «костюмы», даже если кажется, что они идеально подходят. Иногда бывает, мы отключаемся от себя, перестаём слышать свои желания, и тогда действительно возникает риск очнуться где-то на кафедре высшей математики и удивиться: что я здесь делаю? Ведь я хотел быть путешественником, пилотом, мечтал заниматься историческими реконструкциями и водить кукол в театре. Как меня угораздило стать математиком?
Внимательно следи за тем, чтобы те роли, профессии, занятия, которые ты выбираешь, были действительно твоими. Это очень важно. Именно поэтому стоит хорошо подумать, куда пойти после школы, на кого выучиться, кем хочется работать. Потому что если ты ответишь себе «не знаю», «хочется просто остаться собой, и всё» – жизнь сама нарядит тебя в то, что под руку попадётся. Нам такой сценарий ни к чему.
ТЕСТ «КТО Я?»
Я предлагаю тебе пока просто зарядку для ума, а не профессиональный психологический тест. Попробуй перечислить 20, 30, а может быть, 50 пунктов, которые отразят стороны твоей личности. Пиши даже то, что пока не похоже на будущую профессию. А потом представь, что весь этот длинный список – твой «гардероб», в котором умещается столько разных воплощений. И всё это – ты!
ВЕКТОР ЛИЧНОСТИ
Как ты знаешь из математики (ну или скоро узнаешь), у вектора есть длина и направление. Попробуй нарисовать все свои векторы, все направления развития. Поставь на листе бумаги точку: здесь ты находишься сейчас, со всеми твоими увлечениями и достижениями. И проведи из этой точки векторы разной длины и в разных направлениях. Один отрезок – это, например, спорт, которым ты хочешь заниматься и дальше. Другой, более длинный, – профессия, которую ты хочешь получить. Рядом можно начертить ещё пару векторов – это те факультеты и специальности, которые ты рассматриваешь в качестве запасного варианта. А вот из глины ты лепишь отлично, но развиваться в этом направлении больше не хочешь, так что можно не чертить этот отрезок.
Соедини концы векторов линиями: получится такая «паутина», внутри которой будет поле твоих возможностей. В каком-то смысле это и есть ты: всё, в чём ты можешь и хочешь себя выразить. Представлять себе такое поле и действовать в нём – это и называется «становиться собой».