Задача
Но давайте сначала познакомимся с устройством коллайдера. На рис. 1 очень схематично изображено основное кольцо БАК. Реальное его устройство, конечно, сложнее, но для этой задачи мы намеренно упрощаем ситуацию. По кольцу навстречу друг другу циркулируют протонные пучки. На самом деле они летают в двух близких вакуумных трубах, но для простоты будем считать, что все происходит в одной трубе. Каждый пучок состоит из отдельных компактных облачков (сгустков) протонов.
Рис. 1. Схема коллайдерного кольца с восемью точками пересечения встречных пучков
Будем считать, что в восьми точках вдоль кольца, расположенных на одинаковом расстоянии друг от друга, траектории встречных пучков пересекаются, и там протоны могут сталкиваться друг с другом – если, конечно, сгустки пролетят сквозь эту область одновременно! Впрочем, даже если сгустки пересеклись, то это вовсе не значит, что все протоны из одного облачка столкнулись с протонами из другого. Они очень разреженные, так что подавляющее большинство протонов ни с кем не сталкивается, соударения испытывают только несколько протонов из многих миллиардов. Поэтому сгустки в целом просто проходят друг сквозь друга, продолжая лететь по своей траектории, и готовы встречаться на каждом обороте снова и снова.
А теперь представьте себе, что вы сидите в пультовой коллайдера и управляете запуском пучков в ускорительное кольцо. Вы можете послать в него несколько сгустков, причем не обязательно поровну в обоих направлениях. Считается, что все сгустки летят с одинаковой скоростью, но то, как именно они будут размещены на кольце, зависит только от вас! Ваша задача – сделать так, чтобы столкновения происходили во всех восьми точках.
Выясните, какое минимальное число сгустков надо запустить в кольцо коллайдера и как именно их расположить относительно друг друга, чтобы этого добиться.
Подсказка
Пожалуй, единственное, что можно здесь сказать, – эту задачу вполне решают обыкновенные школьники средних классов.
Решение
Первым делом подмечаем, что любая встречная пара сгустков, движущихся с одинаковой скоростью, будет встречаться на кольце ровно два раза в диаметрально противоположных точках. Если мы хотим задействовать таким образом восемь точек, то минимальное количество встречных пар – четыре.
Рис. 2.