,
53,
54.
Искусственный Интеллект на уровне человека (Human Level Machine Intelligence) – это синоним полного ИИ, завершенного ИИ, сильного ИИ. Этот термин обозначает степень развития искусственного интеллекта на уровне человека. Человеческий мозг является моделью для создания такого интеллекта.
Искусственный нейрон (Artificial neuron) – это математическая функция, задуманная как модель биологических нейронов, нейронная сеть. Разница между искусственным нейроном и биологическим нейроном представлена на рисунке.
Искусственные нейроны – это элементарные единицы искусственной нейронной сети. Искусственный нейрон получает один или несколько входных сигналов (представляющих возбуждающие постсинаптические потенциалы и тормозные постсинаптические потенциалы на нервных дендритах) и суммирует их для получения выходного сигнала (или активации, представляющего потенциал действия нейрона, который передается по его аксону). Обычно каждый вход взвешивается отдельно, а сумма проходит через нелинейную функцию, известную как функция активации или передаточная функция. Передаточные функции обычно имеют сигмовидную форму, но они также могут принимать форму других нелинейных функций, кусочно-линейных функций или ступенчатых функций. Они также часто являются монотонно возрастающими, непрерывными, дифференцируемыми и ограниченными55,56.

Искусственный сверхинтеллект (Artificial Superintelligence) – это термин, который обозначает степень развития искусственного интеллекта, превосходящую человеческие возможности во всех аспектах. «Искусственный интеллект», который широко используется с 1970-х годов, относится к способности компьютеров имитировать человеческое мышление. Искусственный сверхинтеллект делает шаг вперед и создает мир, в котором когнитивные способности компьютера превосходят человеческие.
Исследования будущего (Futures studies) – это изучение постулирования возможных, вероятных и предпочтительных вариантов будущего, а также мировоззрений и мифов, лежащих в их основе.
Исходная отметка (Бенчмарк) ИИ (AI benchmark) – это эталонный тест ИИ для оценки возможностей, эффективности, производительности и для сравнения ИНС, моделей машинного обучения (МО), архитектур и алгоритмов при решении различных задач ИИ создаются и стандартизируется специальные эталонные тесты, исходные отметки. Например, Benchmarking Graph Neural Networks – бенчмаркинг (эталонное тестирование) графовых нейронных сетей (ГНС, GNN) – обычно включает инсталляцию конкретного бенчмарка, загрузку исходных датасетов, проведение тестирования ИНС, добавление нового датасета и повторение итераций.