Глоссариум по искусственному интеллекту и информационным технологиям - страница 40

Шрифт
Интервал


,70,71,72,73.



Машинное обучение Microsoft Azure (платформа автоматизации искусственного интеллекта) (Microsoft Azure Machine Learning) – это функция, которая предлагает расширенную облачную аналитику, предназначенную для упрощения машинного обучения для бизнеса. Бизнес-пользователи могут моделировать по-своему, используя лучшие в своем классе алгоритмы из пакетов Xbox, Bing, R или Python или добавляя собственный код R или Python. Затем готовую модель можно за считанные минуты развернуть в виде веб-службы, которая может подключаться к любым данным в любом месте. Его также можно опубликовать для сообщества в галерее продуктов или на рынке машинного обучения. В Machine Learning Marketplace доступны интерфейсы прикладного программирования (API) и готовые сервисы. Также, – это способность машин автоматизировать процесс обучения. Входными данными этого процесса обучения являются данные, а выходными данными – модель. Благодаря машинному обучению система может выполнять функцию обучения с данными, которые она принимает, и, таким образом, она становится все лучше в указанной функции.


Машинный разум (Machine intelligence) – это общий термин, охватывающий машинное обучение, глубокое обучение и классические алгоритмы обучения.


Машины опорных векторов или сети опорных векторов(Support-vector machines, Support-vector networks) – это контролируемые модели обучения с соответствующими алгоритмами обучения, которые анализируют данные для классификации и регрессионного анализа. Разработаны в AT&T Bell Laboratories Владимиром Вапником с коллегами в 1992 году. Машины опорных векторов являются одним из самых надежных методов прогнозирования, основанным на статистическом обучении или теории Вапника – Червоненкиса, предложенной Вапником (1982, 1995) и Червоненкисом (1974). Учитывая набор обучающих примеров, каждый из которых помечен как принадлежащий к одной из двух категорий, алгоритм обучения машины опорных векторов строит модель, которая относит новые примеры к той или иной категории, превращая ее в невероятностный двоичный линейный классификатор (хотя методы такие как масштабирование Платта, существуют для использования машин опорных векторов в вероятностной классификации). Машины опорных векторов сопоставляют обучающие примеры с точками в пространстве, чтобы максимизировать ширину разрыва между двумя категориями. Затем новые примеры сопоставляются с тем же пространством, и их принадлежность к категории определяется в зависимости от того, на какую сторону разрыва они попадают. В дополнение к выполнению линейной классификации SVM могут эффективно выполнять нелинейную классификацию, используя так называемый трюк ядра, неявно отображая свои входные данные в многомерные пространства признаков. Когда данные не размечены, обучение с учителем невозможно, и требуется подход к обучению без учителя, который пытается найти естественную кластеризацию данных в группы, а затем сопоставляет новые данные с этими сформированными группами. Алгоритм кластеризации опорных векторов, созданный Хавой Зигельманн и Владимиром Вапником, применяет статистику опорных векторов, разработанную в алгоритме машин опорных векторов, для категоризации неразмеченных данных