Такая разница может быть связана с тем, что морские свинки, проживая на островах недалеко от Южной Америки, либо получали с пищей избыток аскорбиновой кислоты, либо подвергались повышенному воздействию радиации (глутатион и другие серосодержащие аминокислоты защищают организм от ионизирующего излучения), либо получали с пищей то, чего нет в других районах Земли и что требует больших количеств глутатиона и серосодержащих аминокислот для обезвреживания, либо сочетание всех этих факторов. Но факт остается фактом, морские свинки – единственные экспериментальные животные, не способные синтезировать аскорбиновую кислоту и производят большое количество глутатиона в тканях, заменяющих ее. В этом смысле они близки к человеку. Морские свинки, так же как и человек, и некоторые приматы не способны синтезировать аскорбиновую кислоту (АК) и полностью переориентированы на доминирование системы глутатиона в защитных механизмах. Ранее мы отмечали, что отказ предшественников человека от синтеза АК связан с мобилизацией ресурсов соединительной ткани для все более увеличивающегося мозга, с этим же связана меньшая чувствительность тканей к глюкокортикоидам, чем у большинства животных, особенно печени, утрата некоторых особо устойчивых к утомлению групп мышц (Павлов В. А. 2008, 2011,2012,2013,2014,2017). В общем многих адаптивных механизмов характерных для животных в дикой природе, для увеличения и усиления лишь одного адаптивного органа и связанных с ним механизмов адаптации мозга.
Крысы же, являясь своеобразным биологическим реликтом (первые млекопитающие были похожи на крыс), и проживая в загрязненной среде и подвергаясь разнообразным неблагоприятным воздействиям её, чтобы выжить, сохранили способность противостоять многочисленным отрицательным факторам, если нужно быстро мутировать. Но при этом они вынуждены пожертвовать устойчивостью к мутагенам ядерного аппарата. Поэтому у них и не выражена глутатионовая защита.
Исследуя особенности метаболического участия мозга и нервной ткани, а также печени (как два наиболее массивных паренхиматозных органа – по 2% от массы тела человека), нами было установлено, что наибольшее значение головной мозг, как участник адаптивных метаболических процессов имеет в первые годы жизни ребенка. во внутриутробном периоде жизни мозг плода вместе с матерью принимает участие в регуляции собственного метаболизма, во время родов и в первые месяцы жизни в мозге младенца образуются вещества, защищающие мозг от повреждений, гипоксии и других неблагоприятных факторов (таурин, цистеиновая кислота, глутатион и др.). по мере роста и развития ребенка, роль метаболических и интуитивных механизмов адаптации с участием мозга утрачиваются, равно как утрачиваются ненужные на определенном этапе онтогенеза структуры. имеются данные, что до 7 лет в крови ребенка повышено содержание метаболитов СТ (и появление некоторых из них в моче) необходимых для интенсивных обменных процессов в мозге- пролин, оксипролин, глутаминовая кислота глицингликозаминогликаны, серосодержащие аминокислоты и ряд других метаболитов. То есть сохраняется определенная мобильность СТ как ресурса нервной ткани и мозга.