Методика преподавания математики в начальной школе - страница 6

Шрифт
Интервал


б) В любом прямоугольнике сумма внутренних углов равна 360̊ . Четырехугольник АВСD – … .


III. Обычно, в математике, когда говорят о доказательстве, имеют в виду проверку высказанного утверждения.

Доказать какое-либо утверждение – это значит показать, что это утверждение логически следует из системы истинных и связанных с ним утверждений.

В логике считают, что если рассматриваемое утверждение логически следует из уже доказанных утверждений, то оно обоснованно и также истинно, как и они. Т.е. основным способом доказательства является дедуктивный вывод.

Доказательство – это логическая операция, в процессе которой обосновывается истинность какого-либо утверждения с помощью других истинных и связанных с ним утверждений. Для этого строится конечная цепочка умозаключений, причем заключение каждого из них (кроме последнего) является посылкой в одном из последующих умозаключений.

Доказательство в виде цепочки умозаключений выполняется в соответствии с правилами вывода и указанием всех посылок, оно не предназначено для постоянного использования на практике, где чаще пользуются свернутыми схемами умозаключений.

Применяются не только правила построения дедуктивных умозаключений, но и четыре основных закона логики:

1. Закон тождества.

Каждая мысль, повторяемая в рассуждении, должна быть тождественна самой себе. Это означает, что в процессе рассуждения нельзя подменять одну мысль другой, а одно понятие другим. Нельзя тождественные мысли выдавать за различные, а различные за тождественные.

2.Закон непротиворечия.

Высказывание и его отрицание не могут быть одновременно истинными, одно из них всегда ложно.

Если в в мышлении или речи человека обнаружено логическое противоречие, то такое мышление считается неправильным, а суждение вытекающее из него – ложным.

3. Закон исключенного третьего.

Из двух противоречивых высказываний об одном и том же предмете, одно – истинно, другое – ложное, третьего быть не может.

Этот закон требует выбора одной из взаимоисключающих альтернатив.

4. Закон достаточного основания.

Всякое истинное утверждение должно быть обосновано с помощью других утверждений, истинность которых уже доказана.

Т.е. истинность утверждения нельзя принимать на веру. В качестве аргументов для доказательств используются определения понятий, доказанные теоремы и правила.