Ингенциальная математика. Монография - страница 3

Шрифт
Интервал


· Указание понятия ингенциальных чисел и определение их местонахождения на числовой оси;

· Изучение процессов проведения алгебраических и арифметических операций с ингенциальными числами;

· Представление роли ингенциальных чисел в тригонометрическом представлений;

· Решение уравнения Эйлера с ингенциальными числами;

· Указание геометрического смысла ингенциальных чисел;

· Определение местонахождения комплексных чисел на числовой оси;

· Указание понятия пер-ингенциальных чисел и определение их местонахождения на числовой оси;

· Изучение процессов проведения алгебраических и арифметических операций с пер-ингенциальными числами;

· Представление роли пер-ингенциальных чисел в тригонометрическом представлений;

· Решение уравнения Эйлера с пер-ингенциальными числами;

· Указание геометрического смысла пер-ингенциальных чисел.

Объектом данного исследования являются ингенциальные и пер-ингенциальные числа.

Предметом исследования является процесс определения всевозможных операций в ингенциальной математике.

При проведении данной работы применён теоретический метод исследования.

Научная новизна данной работы заключается в следующем:

· Первое исследование функции для релятивистской энергии как полностью математический объект;

· Определение местонахождения на числовой оси комплексных чисел;

· Первое указание понятия ингенциальных чисел и определение их местонахождения на числовой оси;

· Изучение процессов проведения алгебраических и арифметических операций с ингенциальными числами;

· Представление роли ингенциальных чисел в тригонометрическом представлений;

· Решение уравнения Эйлера с ингенциальными числами;

· Указание геометрического смысла ингенциальных чисел;

· Первое определение местонахождения комплексных чисел на числовой оси;

· Указание понятия пер-ингенциальных чисел и определение их местонахождения на числовой оси;

· Изучение процессов проведения алгебраических и арифметических операций с пер-ингенциальными числами;

· Представление роли пер-ингенциальных чисел в тригонометрическом представлений;

· Решение уравнения Эйлера с пер-ингенциальными числами;

· Указание геометрического смысла пер-ингенциальных чисел.

Практические результаты заключаются в следующем:

· Положен новый этап в развитии математического аппарата запутанных квантовых состояний;