Но перед тем, как перейти к третьему случаю, стоит уточнить, что благодаря выводу основной энергетической функции, определяется местоположение ингенциальных чисел на числовой оси, а именно эти числа являются большими бесконечности, а значит является вершиной всех множеств, охватывая каждое из них, в том числе и комплексное множество. Также при этом определяется, что комплексные числа являются наименьшими и находятся уже между промежутками натуральных чисел. Также можно определить третий вид чисел как дроби единицы и комплексного числа. При этом эти виды чисел называются пер-ингенциальные от латинского per-ingens – «сверхогромный». Этот вид чисел является ещё более большим чем ингенциальные числа и обладает ещё более завораживающими свойствами, которые ещё только предстоит подробнее исследовать, впрочем, как и все остальные.
1. Балк М. Б., Балк Г. Д., Полухин А. А. Реальные применения мнимых чисел. – Киев: Радянська школа, 1988. – 255 с.
2. Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. – изд. 13-е. – М.: Наука, 1985. – 544 с.
3. Бугров Я. С., Никольский С. М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии. М.: Дрофа, 2004. – 288 с.