Алтай – кладовая Сибири - страница 5

Шрифт
Интервал


Скандий используется для получения сверхтвёрдых материалов. Так, например, легирование карбида титана карбидом скандия весьма резко поднимает микротвёрдость (в 2 раза), что делает этот новый материал четвёртым по твёрдости после алмаза (около 98,7 – 120 ГПа), нитрида бора (боразона), (около 77—87 ГПа), сплава бор-углерод-кремний (около 68—77 ГПа), и существенно больше, чем у карбида бора (43,2 – 52 ГПа), карбида кремния (37 ГПа), микротвёрдость сплава карбида скандия и карбида титана, около 53,4 ГПа (у карбида титана например 29,5 ГПа). Особенно интересны сплавы скандия с бериллием, обладающие уникальными характеристиками по прочности и жаростойкости.

Так, например, бериллид скандия (1 атом скандия и 13 атомов бериллия) обладает наивысшим благоприятным сочетанием плотности, прочности и высокой температуры плавления, и может явится лучшим материалом для строительства аэрокосмической техники, превосходя в этом отношении лучшие сплавы из известных человечеству на основе титана, и ряд композиционных материалов (в том числе ряд материалов на основе нитей углерода и бора).

В атомной промышленности с успехом применяется гидрид – и дейтерид скандия – прекрасный замедлитель нейтронов, и мишень (бустер) в мощных и компактных нейтронных генераторах.

Диборид скандия (температура плавления 2250° C) применяется в качестве компонента жаропрочных сплавов, а так же как материал катодов электронных приборов. В атомной промышленности находит применение бериллид скандия в качестве отражателя нейтронов, и в частности этот материал, равно как и бериллид иттрия предложен в качестве отражателя нейтронов в конструкции атомной бомбы.

Важную роль оксид скандия может сыграть в медицине (высококачественные зубные протезы).

Высокотемпературной сверхпроводимости, при производстве лазерных материалов (ГСГГ). Галлий-скандий-гадолиниевый гранат при легировании его ионами хрома и неодима позволил получить 4,5% КПД и рекордные параметры в частотном режиме генерации сверхкоротких импульсов, что даёт весьма оптимистичные предпосылки для создания сверхмощных лазерных систем для получения термоядерных микровзрывов уже на основе чистого дейтерия (инерциальный синтез) уже в самом ближайшем будущем. Так, например ожидается что в ближайшие 10—13 лет лазерные материалы на основе ГСГГ и боратов скандия займут ведущую роль в разработке и оснащении лазерными системами активной обороны для самолётов и вертолётов в развитых странах, и параллельно с этим развитие крупной термоядерной энергетики с привлечением гелия-3 (добываемого на Луне), в смесях с гелием-3 лазерный термоядерный микровзрыв уже получен.