.
БиблиотекаPandas (сокращение от «panel-data-s») – это инструмент машинного обучения, используемый для исследования, очистки, преобразования и визуализации данных, поэтому его можно использовать в моделях машинного обучения и обучении. Это библиотека Python с открытым исходным кодом, построенная на основе NumPy. Pandas может обрабатывать три типа структур данных: серии, DataFrame и панель.
Библиотека Pytorch & Torch – это библиотека машинного обучения, которая в основном используется для приложений обработки естественного языка и компьютерного зрения. Разработанная исследовательской лабораторией искусственного интеллекта и выпущенная в сентябре 2016 года, это библиотека с открытым исходным кодом, основанная на библиотеке Torch для научных вычислений и машинного обучения. PyTorch предоставляет операции с объектом n-мерного массива, аналогичные NumPy, однако, кроме того, он предлагает более быстрые вычисления за счет интеграции с графическим процессором. PyTorch автоматически различает построение и обучение нейронных сетей. PyTorch – это внесла свой вклад в разработку нескольких программ глубокого обучения – Tesla Autopilot, Uber’s Pyro, PyTorch Lighten и т. д.
БиблиотекаScikit-learn – это простая в освоении библиотека Python с открытым исходным кодом для машинного обучения, построенная на NumPy, SciPy и matplotlib. Его можно использовать для классификации данных, регрессии, кластеризации, уменьшения размерности, выбора модели и предварительной обработки.
БиблиотекаSciPy – это библиотека Python с открытым исходным кодом для выполнения научных и технических вычислений на Python. Она была разработана открытым сообществом разработчиков, которое также поддерживает его поддержку и спонсирует разработки. SciPy предлагает несколько пакетов алгоритмов и функций, которые поддерживают научные вычисления: константы, кластер, fft, fftpack, интегрировать и т. д. SciPy по сути является частью стека NumPy и использует многомерные массивы в качестве структур данных, предоставляемых модулем NumPy. Первоначально выпущенный в 2001 году, она распространялась по лицензии BSD с репозиторием на GitHub.
БиблиотекаSeaborn – это библиотека визуализации данных Python для построения «привлекательных и информативных» статистических графиков. Seaborn основан на Matplotlib. Он включает в себя множество визуализаций на выбор, включая временные ряды и совместные графики.