, как показано на рисунке.Далее хотелось бы найти , но для этого нужно отметить на горизонтальной оси. Самый простой способ сделать это – двигаться горизонтально от точки до диагональной линии. Когда достигнем диагональной линии, окажемся в , так как сохранили ту же вторую координату, но изменили первую координату. Теперь, чтобы найти , просто двигаемся вертикально назад к параболе, чтобы найти точку . Теперь это просто вопрос повторения этих шагов навсегда: двигаться вертикально к параболе, затем горизонтально к диагональной линии, затем вертикально к параболе, затем горизонтально к диагональной линии и так далее.
Рисунок 1.3. Паутинная диаграмма нелинейной модели.
Судя по графику ясно, что если начальная популяция лежит в диапазоне от 0 до , то модель с и приведёт к постоянно растущему значению популяции, которое приближается к предельному значению пропускной способности равному 10.
Если оставить те же значения
и , но положить , то паутина будет выглядеть так, как показано на рисунке 1.4.
Рисунок 1.4. Паутинная диаграмма нелинейной модели.
Действительно, становится ясным, что если
имеет значение больше, чем , то наблюдается немедленное падение численности популяции. Если такое падение окажется ниже критического, то произойдёт постепенное увеличение, приближающееся обратно к предельному значению пропускной способности модели.Вопросы для самопроверки: