Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - страница 21

Шрифт
Интервал


. Точнее говоря, могут, но только не совсем планеты (которые одни только и входили в предмет вычислений Кеплера), а тела, прилетающие извне Солнечной системы и улетающие куда-то прочь из нее. Здесь произошло очередное маленькое чудо: с помощью логического анализа (математики) познание вышло за текущие пределы наблюдений. Математический вывод законов Кеплера в большой степени поддержал уверенность в том, что и догадки по поводу законов неплохи, и математика выбрана правильно. А затем та же математика стала для нас проводником, указывая на новые, ранее не наблюдавшиеся виды движения. Для тел вблизи Солнца их оказалось три (вместе с эллипсами), если не считать движения по прямой точно в направлении Солнца[19]. И буква, и дух метода исследования мира по схеме «причина – следствие» говорят, что нет никакой возможности принять одни выводы и отказаться от других – неважно, что другие виды движения не наблюдались. Вот все виды движения под действием притяжения к центральному телу (рис. 1.5).


Рис. 1.5. Орбиты: эллипс, гипербола и парабола


Эллипсы. Во-первых (Кеплер был абсолютно прав!), эллипсы: математически точные эллипсы. Движение в разных частях эллипса происходит быстрее или медленнее точно так, как это утверждал Кеплер, вот только после Ньютона это утверждение перестало быть отдельным законом природы, а стало следствием закона движения и закона тяготения. Точно так же и третий закон Кеплера потерял самостоятельность.

Для Кеплера имеющиеся орбиты планет были уникальными. Для Ньютона, получившего контроль над тем, как эти эллипсы вырастают из законов и начальных условий, очевидно, что эллипсы могут быть очень разными: сильнее или слабее вытянутыми («совсем не вытянутый» эллипс – это попросту окружность). Математически тот или иной эллипс, по которому движется планета, определяется начальными условиями: тем, в каком направлении и с какой скоростью планета двигалась в выбранный «начальный» момент. Чтобы предсказать поведение реальных планет, надо взять эти начальные условия из наблюдений (определить скорость может оказаться сложнее, чем определить положение; но нужно и то и другое). Решение уравнений движения с такими начальными условиями дает в точности те траектории, которым реальные планеты и следуют, и мы уверенно предсказываем, что с ними будет в будущем