Пытаясь проснуться - страница 2

Шрифт
Интервал


С точки зрения же производственного процесса, важно отметить, что это не случай ста тысяч обезьянок за ста тысячами печатных машинок, когда из огромного массива случайных текстов можно вынуть те, что более-менее похожи на человеческие, – пул рассказов был не так уж велик, около пятидесяти, а весь процесс занял несколько месяцев. Как редактор я могу сказать, что почти все это были неплохие тексты. Если фокусироваться на характере текста – напоминающего вещий сон, – то здесь есть с чем провести параллели: Individuum выпускал мистические сказки Романа Михайлова, треть «Муравечества» Кауфмана – кислотный трип; конечно, вклад нейросети – по определению – безумен, но при этом она хорошо задает загадки и умеет рассказать историю. Не все люди так могут.

Вначале были сомнения. Первые пробы походили больше на макраме из творчества знакомого писателя – то здесь, то там попадались не аллюзии, а целиковые фразы. По словам тимлида AGI NLP Татьяны Шавриной, модель время от времени сбивалась на стихи (плохие), не создавала финалов для рассказа (могла генерировать текст бесконечно, постепенно уходя в абсурд), а пытаясь скомпоновать длинную фразу «в духе Пепперштейна», могла к концу предложения запутаться в родовых и падежных окончаниях. Потребовалось увеличить количество данных для дообучения и убрать из них все лишнее, чтобы нейросеть строже усвоила литературную форму рассказа. Модель теперь пишет более гладко и стабильно, без типовых ошибок, строже придерживается авторского стиля и – возможно, это просто кажется, – выбирает более деятельные сюжеты и более отрешённые диалоги, пробуждая в читателе отзвук поэтического чувства. Что до уникальных примет творчества нейросети, Шаврина указывает на зыбкость описываемого ею мира и на нестандартное словоупотребление: «Иногда „нейроавтор“ выражается необычно и неоднозначно – как и писатели-люди. Но ведь писатели – творцы новых слов и выражений. Возможно, однажды мы будем подхватывать популярные фразочки, даже не зная, что они от ruGPT-3 или какого-нибудь следующего поколения русскоязычных генеративных нейросетей». По мере усложнения модели нейрорассказчик обрел свою «интонацию» – сновидческую, афористичную, интуитивно понятную и немного тревожащую. Мы бы не стали выпускать сборник, если бы за ним не стояло ощущение небывалого технологического прорыва и успешности проведенной стыковки «человек – машина». Как сказал Денис Шевелев, сценарист и аналитик AGI NLP, занимавшийся подбором данных и первичной фильтрацией созданного нейросетью текста: «Трудность работы секретарем у писателя-машины была не в том, что время от времени генерация оказывалась неудачной. Наоборот, иногда труднее было поверить, что текст, который ты сейчас читаешь, создан не человеком… И дождаться от модели, когда она решит продолжать именно его, а не вилять сюжетно в одну или другую сторону, откуда может не вернуться к столь увлекательно начатой истории. Потому что каждое такое возвращение становилось открытием».